

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

EXTENDING DOD MODELING AND SIMULATION WITH
WEB 2.0, AJAX AND X3D

by

Michael Farias

September 2007

 Thesis Advisor: Don Brutzman
 Second Reader: Don McGregor

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Extending DoD Modeling and Simulation with Web
2.0, Ajax and X3D
6. AUTHOR Michael Farias

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT
DoD has much to gain from open source Web 2.0 and Ajax Applications. The Java language has come a long way in

providing real world case studies and scalable solutions for the enterprise that are currently in production on sites such as
eBay.com (http://www.ebay.com) and MLB.com (http://www.mlb.com). The most popular Ajax application in production is
Google Maps (http://maps.google.com), which serves as a good example of the power of the technology. Open Source technology
has matured greatly in the past three years and is now mature enough for deployment within DoD systems. In the past,
management within the DoD has been reluctant to consider Enterprise Level Open Source Technologies as a solution in the fear
that they might receive little to no support. In fact, the Open Source Business Model is entirely based on first developing a broad
user base then providing support as a service for their clients.

DoD Modeling and Simulation can create dynamic and compelling content that is ready for the challenges of the 21st
century and completely integrated with the GIG (Global Information Grid) concept. This paper goes over a short history of MVC
(Model View Controller Architectures) and goes over various pros and cons of each framework (Struts, Spring, Java Server Faces)
which is critical for the deployment of a modern Java Web Application. Ajax and various frameworks are then discussed (Dojo,
Google Web Toolkit (GWT), ZK, and Echo2). The paper then touches on Ajax3D technologies and the use of Rez to generate
simple 3D models of entire cities and goes on to discuss possible extended functionality of the Rez concept to create a terrain
system like Google Earth in X3D.

15. NUMBER OF
PAGES

227

14. SUBJECT TERMS
Asynchronous JavaScript and XML, Ajax, Web 2.0, Mashups, Extensible X3D Graphics, X3D,
Extensible X3D Earth , X3DEarth, Rez, Extensible Markup Language, XML, Extensible Markup
Language Style Sheet, XSLT, Java, Open Source, Server Side Architecture, Model View Controller,
MVC, Keyhole Markup Language, KML, Terrain, Collada, MOVES, SAVAGE

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

EXTENDING DOD MODELING AND SIMULATION
WITH WEB 2.0, AJAX AND X3D

Michael A. Farias

Lieutenant, United States Navy
 B.S., United States Naval Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MODELING VIRTUAL ENVIRONMENTS AND
SIMULATION (MOVES)

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Michael A. Farias

Approved by: Don Brutzman
Thesis Advisor

Don McGregor
Second Reader

Rudy Darken
Chair, MOVES Academic Committee

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

DoD has much to gain from Web 2.0 and the Ajax paradigm in open source. The

Java language has come a long way in providing real world case studies and scalable

solutions for the enterprise that are currently in production on sites such as eBay.com

(http://www.ebay.com) and MLB.com (http://www.mlb.com). The most popular Ajax

application in production is Google Maps (http://maps.google.com), which serves as a

good example of the power of the technology. Open Source technology has matured

greatly in the past three years and is now mature enough for deployment within DoD

systems. In the past, management within the DoD has been reluctant to consider

Enterprise Level Open Source Technologies as a solution, fearing that they might receive

little to no support. In fact, the Open Source Business Model is entirely based on first

developing a broad user base then providing support as a service for their clients.

DoD Modeling and Simulation can create dynamic and compelling content that is

ready for the challenges of the 21st century and completely integrated with the Global

Information Grid (GIG) concept. This paper presents a short history of Model View

Controller (MVC) architectures and goes over various pros and cons of each framework

(Struts, Spring, Java Server Faces), which is critical for the deployment of a modern Java

web application. Ajax and various frameworks are then discussed (Dojo, Google Web

Toolkit, ZK, and Echo2). The paper then touches on Ajax3D technologies and the use of

Rez to generate 3D models of entire cities and goes on to discuss possible extended

functionality of the Rez concept to create a terrain system like Google Earth in X3D-

Earth.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. MOTIVATION ..1
C. OBJECTIVES ..1
D. OVERVIEW...1
E. THESIS ORGANIZATION..13

II. BACKGROUND AND RELATED WORK ..17
A. INTRODUCTION..17
B. BACKGROUND ..17
C. MODEL VIEW CONTROLLER (MVC) BASED ARCHITECTURE....21
D. COMPARISON OF LEADING MVC FRAMEWORKS..........................22
E. X3D-EARTH, THE END-STATE OF X3D AND AJAX.24
F. CONCLUSIONS ..27

III. ASYNCHRONOUS JAVASCRIPT AND XML ...29
A. INTRODUCTION..29
B. OVERVIEW...29
C. ENCOMPASSING TECHNOLOGIES ...30
D. HIGH LEVEL AJAX ARCHITECTURE...30
E. WEB APPLICATION MODEL VS. AJAXIAN APPLICATION

MODEL ..31
F. TWEAKING AJAX AND EXTENDING IT WITH COMET33

1. Ajax Polling ..34
2. Ajax Asynchronous (Smart) Polling...35
3. Streaming Comet aka (Server Push, Comet Forever-Frames)......36
4. Comet Long Polling ...37

G. COMPARISON OF LEADING AJAX FRAMEWORKS.........................37
H. CASE STUDY: LEGACY BUPERS ACCESS FROM NAVAL

PERSONNEL COMMAND..44
I. EXAMPLE AJAX APPLICATION: MOBILE DEVICE

CHECKOUT ..44
J. CONCLUSIONS ..49

IV. AJAX PERFORMANCE ..51
A. INTRODUCTION..51
B. OVERVIEW...51
C. JAVASCRIPT COMPRESSION ...52
D. MINIMIZING WHITESPACE AND OTHER TRICKERY53
E. AVOIDING EXPENSIVE JAVASCRIPT METHOD

INVOCATIONS...55
F. KNOW THYSELF KNOW THY BROWSER..55
G. CONCLUSIONS ..57

 viii

V. AJAX SECURITY ...59
A. INTRODUCTION..59
B. OVERVIEW...59
C. SANDBOX CONCEPT (“SERVER OF ORIGIN”)...................................60
D. CROSS SITE SCRIPTING (XSS)..61
E. DISCUSSION OF SAMY WORM...62
F. CROSS SITE REQUEST FORGERY (XSRF)...63
G. PREVENTION OF ATTACKS..63
H. CONCLUSIONS ..66

VI. AJAX DESIGN PATTERNS FOR WEB SERVICES ...67
A. INTRODUCTION..67
B. OVERVIEW...68
C. RESTFUL DESIGN PATTERN...68
D. RPC DESIGN PATTERN...71

1. XML-RPC Architecture..72
2. Ajax Stub Architecture..72

E. HTML-MESSAGE DESIGN PATTERN..73
F. XML MESSAGE ARCHITECTURE..74

1. Decide How Server Will Send XML...74
2. Decide How Browser Will Handle XML From Server-Side..........74

G. JSON MESSAGE ARCHITECTURE ...77
1. JSON Advantages ..78
2. JSON Disadvantages..78

H. CONCLUSIONS ..80

VII. AJAX3D..81
A. INTRODUCTION..81
B. OVERVIEW...81
C. X3D SCENE ACCESS INTERFACE (SAI)..82
D. AJAX3D HELLO WORLD EXAMPLE ...83
E. AJAX3D DYNAMIC SCENE CREATION EXAMPLE85
F. CONCLUSIONS ..89

VIII. INTEGRATING X3D-EARTH WITH KML AND COLLADA...........................91
A. INTRODUCTION..91
B. OVERVIEW...91
C. X3D-EARTH ..92
D. X3D-GEOSPATIAL NODE OVERVIEW..94
E. KML SPECIFICATION OVERVIEW..96
F. KML IN GOOGLE MAPS ...97
G. EASY 3D BUILDING OVERLAYS WITH COLLADA AND KMZ.....100
H. COLLADA AS A 3D INTERCHANGE FORMAT..................................101
I. INTEGRATING COLLADA AND X3D ...101
J. GOOGLE 3D WAREHOUSE ..104
K. IMPORTING KMZ INTO BLENDER FOR BUILDING MODELS105

 ix

L. LIMITATIONS AND OPPORTUNITY: GOOGLE 3D
WAREHOUSE LICENSING STRUCTURE..108

M. LACK OF METADATA IN GOOGLE 3D WAREHOUSE....................110
N. CONCLUSIONS ..112

IX. REZ TERRAIN DATA CONVERSION INTO X3D ...115
A. INTRODUCTION..115
B. REZ OVERVIEW..115
C. STEP-BY-STEP INSTRUCTIONS FOR GETTING STARTED IN

REZ ...119
D. REZ CONCLUSIONS AND RECOMMENDATIONS127

X. INFORMAL GOOGLE EARTH USABILITY COMPARISON129
A. INTRODUCTION..129
B. OVERVIEW...130
C. TEST METHODOLOGY ...132
D. RESULTS ...132
E. DISCUSSION AND RECOMMENDATIONS..136
F. CONCLUSIONS ..137

XI. CONCLUSIONS AND RECOMMENDATIONS...139
A. CONCLUSIONS ..139
B. RECOMMENDATIONS FOR FUTURE WORK....................................140
C. OUTLOOK...148

APPENDIX A. DEFINITION OF RELEVANT TERMS151

APPENDIX B. CONTROLLER ARCHITECTURES ...159

APPENDIX C. NON-AJAXIAN JAVASCRIPT DATEBOX179

LIST OF REFERENCES..189

INITIAL DISTRIBUTION LIST ...197

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. A partial listing of GIG policy requirements from OSD.2
Figure 2. Web 2.0 Mind Map from [4]. In this new contextual definition technique

the word to be defined is centered while the words, which define it, are
clustered around the word and sized proportionally to their importance...........3

Figure 3. Web 2.0 Treeview of Figure 3 from [4]. The arrows define parent-child
relationships within technologies. For example, XMLHttpRequest is the
parent technology behind Ajax. ...4

Figure 4. The Dashboard application on Mac OS X “Tiger” showing one user’s
particular widget setup. Note the weather widget near the bottom of the
screen and the Radio Paradise Web Site widget, which is using Real
Simple Syndication (RSS) to obtain streaming data. RSS is an XML-
based data format typically used to stream blog information, news, and
podcasts..6

Figure 5. An example of an Ajax Component or “widget” from the Dojo Toolkit
library. This widget is called a fisheye control and is embeddable in any
web application. If the widget looks familiar, it is the same type of user
interface that Apple uses for their Dock in OS X “Tiger.” Previously,
components such as the fisheye control were not practical to implement on
the Internet. ..6

Figure 6. A Rez auto-generated X3D view of the San Jose metro-area created using
open source tools Rez and imageSlicer. ..8

Figure 7. New Google Maps Street View from [12], showing panoramic view of
Times Square. Google Maps is the most famous real-world application of
Ajax technologies...9

Figure 8. DTS Interface in Microsoft SQL Server 2000 showing various stages of
dataflow. DTS is useful in SQL Server because it tightly links data
processes with the operating system scheduler since both are Microsoft
products..13

Figure 9. A Basic Ajax Architecture from [14]. Note the Ajax Engine, which serves
as an intermediary between the JavaScript calls and actually returning
server-side data. In most modern frameworks, the Ajax Engine abstracts-
away JavaScript from the developer and lets them stay completely in Java. ..18

Figure 10. An automated view of DTED data in X3D using James Neushul’s server-
side DTED-to-X3D solution from [16]..19

Figure 11. An architecture of Capt. Neushul’s server-side XML solution for DTED
data to X3D from [16]..20

Figure 12. An example of a Model View Controller architecture from [17]. Model
View Controller is a framework used to make web applications more
modular by taking code, which historically resided in the Presentation
Layer and porting it to the Application Layer. In this paradigm, the Model
represents the data, and the presentation layer is the view. The controller
handles the business logic..21

 xii

Figure 13. AT&T Park 3D geometry available for download from Google’s 3D
Warehouse from [20]. ..25

Figure 14. Logo for Rez open source image slicer from the Rez Homepage. (2007).
Retrieved August 11, 2007 from http://planet-
earth.org/Rez/RezIndex.html. Rez is an orthographic image slicer that
allows for orthographic imagery to be overlaid on top of X3D-Earth
Terrain at various levels of detail to yield convincing city models.26

Figure 15. A Rez generated version of downtown San Jose in X3D at street level,
showing details of HP Pavilion in Octaga Player. ...26

Figure 16. A Rez generated version of downtown San Jose at altitude in Octaga
Player. ..27

Figure 17. A listing of the technologies currently in the Ajax domain from [22].............30
Figure 18. A high-level view of proxy-based Ajax Architecture from Ajax

Architecture. (2007). OpenAjax.org. Retrieved August 9, 2007 from
http://openajax.org/member/wiki/images/c/c5/ClientSideAjax.gif. Note
that the server-side Ajax engine is central to the architecture in that it
serves as the intermediary between user-interface logic, typically written
in Java and JavaScript on the client-side. ..31

Figure 19. A classic web application model vs. an Ajax web application model from
[23]. Note that in the new Ajax web application model XML is being
passed from the server-side to the client-side via the Ajax engine..................32

Figure 20. A performance comparison between Ajax and traditional web sites for a
multimedia-heavy site from [23]. ..32

Figure 21. Above is a diagram of the classic web page refresh model from [24]. Note
that, the blue bars denote waiting time and all the waiting time is being
done on the client and browser side. The client in this paradigm cannot
perform any action during the form submission process.34

Figure 22. An Ajax Polling diagram from [24]. This diagram is showing the server
passing data to the client over exactly the same discrete time-intervals.
Note that in this model, the client can perform actions while waiting for
the server to send its next update of information...35

Figure 23. A diagram showing Ajax Asynchronous Polling (Smart Polling) from
[24]. Note that in this new model, the polling wait times are vary. In the
asynchronous-mode polling reacts much better to network lag and server-
load, making it a better solution if massive scalability is a concern................36

Figure 24. A diagram of Streaming Ajax or Comet technology from [24]. In the
diagram, the client and server establish a long running connection to
monitor state and update each other upon state changes. Note that this
technology is still largely experimental and might pose some scalability
problems. Also note the absence of any wait time..37

Figure 25. A screenshot from [26]. ZK is a good choice for a proxy-based Ajax
framework in that it has a lot of support. ZK is currently the most
downloaded Ajax framework on SourceForge.net. ...38

 xiii

Figure 26. The logo for the Dojo toolkit framework from [29]. The Dojo toolkit
provides the developer with rich libraries for everything from security to
server-side push. ..39

Figure 27. The logo for Google Web Toolkit from [25]. Google Web Toolkit takes a
client-centric approach to providing Ajax functionality to the user.40

Figure 28. A representation of the Google Web Toolkit (GWT) architecture from
[30]. Note that in the GWT architecture, more emphasis is put on utilizing
the client-side. Compared to other proxy frameworks such as ZK or
ICEfaces, GWT has relatively few widgets, but the ones it does have are
robust..40

Figure 29. Logo for the Apache XAP Project from [30]. Note that Apache XAP
suffers from a small user base and inadequate examples and
documentation..41

Figure 30. Logo for Echo2 framework from [27]. Echo2 has an Ajax engine that
allows for the developer to not only stay in Java but to program to the
Swing API on the server-side and have the results be translated on the
client-side to JavaScript. Echo2 is a good choice if developers within the
enterprise are very comfortable with Swing. ...41

Figure 31. Logo for Java ICEfaces from [28]. Java ICEfaces is another Ajax proxy
framework that is meant to integrate with (JSF) Java Server Faces
technology. Since, JSF is a Sun standard JSF is growing in popularity and
most Ajax frameworks are being built with JSF compatibility in mind
from the ground up...42

Figure 32. A great ICEfaces demo of an online auction from [33]. The demo shows
dynamically changing bid times and time remaining (shown at JavaOne
2007). ...43

Figure 33. A nice shopping cart Ajax drag and drop control demo in Java ICEfaces
from [34]. The Ajax drag and drop functionality might prove useful in a
future X3D-Earth implementation allowing for features such as place
mark additions..43

Figure 34. The login screen for the Mobile Web Device Checkout application. The
Ajax application was implemented in ZK with a PostgreSQL database as
the back-end and Apache Tomcat as the application server.45

Figure 35. The Main Menu screen for the Mobile Web Application. Note that the
links for Access Reports and View Cart both have Ajax ZK controls
powering them. For Access Reports a ZK paginated data grid is utilized.
For the View Cart functionality, an Ajax date box and data grid are
utilized..45

Figure 36. A ZK tab panel containing a ZK data grid. Note that this Ajax control
contains paginated and sortable columns inherently. The benefits of using
Ajax frameworks are that components frequently support the preceding
features and more natively. ..46

Figure 37. A ZK date box control within the View Cart module of the application.
Note that this control typically takes approximately hundreds of lines of
JavaScript to implement without Ajax. With Ajax this control takes two

 xiv

lines of code and also has built in validation and constraints such as not
allowing the input of dates in the past. ..46

Figure 38. An automatic date box validation example with ZK date box control.
Note that the “in the box” validation that occurs is native to the control
and requires no extra programming. This diagram shows the error
message that automatically pops up if the user enters erroneous data into
the date field at checkout time. ..47

Figure 39. The Ajax code to display a date box with a “no past” and “no empty”
constraints using the ZK framework. Note that this code replaced a 565-
line legacy date box implementation that is presented in Appendix C............48

Figure 40. A list of baseline questions to consider when addressing Ajax
performance. ..52

Figure 41. A summary table showcasing from [38]. In the figure, several types of
JavaScript compression and their expected result on a 9.3-kilobyte file.53

Figure 42. Image Merging Process from [38]. In the figure, the breaking up of
imagery into smaller sections for faster traversal over the wire is shown.54

Figure 43. An example of Image Merging at the presentation layer from [38].54
Figure 44. A chart showing the most CPU-intensive JavaScript methods after [38]........55
Figure 45. A diagram showing Internet Explorer’s better XSLT performance when

paired against Firefox (lower times are better). After Dave Johnson’s
slides, [38]..56

Figure 46. A new Google account sign-on registration form from [42]. The form
showcases an Ajax password strength widget. Also note how a password
of minimal length can still be considered strong depending on the
characters used. ..60

Figure 47. XSS attack code from [44]. The code shows changing domains so that the
malicious JavaScript can satisfy the constraints of the Sandbox. From this
point, a POST was called which added the worm to the users friends list.62

Figure 48. A listing of popular Ajax frameworks and their ability to thwart JavaScript
Hacking from [48]. Note DWR’s ability to thwart most XSRF attacks and
JavaScript Hijacking attempts..65

Figure 49. A diagram of RESTful architecture from [54]...69
Figure 50. A notional RPC Service architecture from [54]...71
Figure 51. An Ajax Stub architecture from [54]. ..73
Figure 52. An HTML Message architecture from [54]. ..74
Figure 53. Plain Text Message architecture from [54]. Housingmaps.com is a great

real-world example of how this architecture can create useful mashups.........75
Figure 54. XML Message architecture from [54]. Netflix’s Top 100 is a good

example of this architecture. ..75
Figure 55. XML movie data on Netflix before conversion into HTML from [54].76
Figure 56. Screenshot of Netflix Top 100 popup functionality from [56]. The figure

demonstrates a real-world application of XML Message architecture in
action..76

Figure 57. An example of an Ajax portal from [55]. The Protopage Homepage is also
an example of XML Message architecture. Google Maps is probably the

 xv

most famous examples of XML Message architecture. Information is
downloaded in XML and converted into HTML via XSLT on the client-
side. ..77

Figure 58. The potential advantages of using JSON as an intermediate data format
from [54]. ...78

Figure 59. The potential disadvantages of using JSON as an intermediate data format
from [54]. ...78

Figure 60. JSON Message Architecture from [54]. JSON was created in 2002 and is
sometimes a cleaner alternative to XML. JSON is generally faster to parse
but XML scales better. XML is also more well known and is more self-
documenting that JSON. Examples of JSON in practice include KIKO
Calendar, an Ajax web scheduling application..78

Figure 61. An example of Submission Throttling from [54]. ...79
Figure 62. An example of Cross Domain architecture from [54].79
Figure 63. Yahoo Mindset screenshot from [58]. Note the usage of a slider to

influence search results based on whether the search is shopping or a
research based search. Again, Web 2.0 is getting the world closer to a
truly semantic web. ..80

Figure 64. Ajax3D Logo from [59]. Ajax3D is a way of modifying the 3D scene
graph dynamically by using asynchronous server-side methods.81

Figure 65. The ISO SAI Architecture from [61]. ..82
Figure 66. An example of a dynamic Hello World with the help of Ajax and X3D

from [62]. ...83
Figure 67. An example of an EMBED tag referencing X3D within presentation layer

from [62]. ...83
Figure 68. X3D Source Code for Hello World Example from [62]. Note no text

values exist yet...84
Figure 69. An example of obtaining handle to X3D scene graph using ISO SAI from

[62]. ..84
Figure 70. An example of accessing individual nodes in X3D using the ISO SAI from

[62]. ..84
Figure 71. A TouchSensor call within the Ajax3D script from [62].................................85
Figure 72. An example of Dynamic X3D scene creation using the ISO SAI from [62]...85
Figure 73. An EMBED tag pointer to associate X3D content with the Flux Browser

from [63]. ...86
Figure 74. Tutorial3.js Code Snippet showing XMLHttpRequest Object from [63]........87
Figure 75. The ajax3d.js code snippet showing X3D node retrieval from [63].87
Figure 76. Initial Screen of Ajax3D tutorial after correctly loading index.html but

before pressing any buttons for geometry from [63]. Note a black screen
can be seen at this point, as no user input has occurred...................................88

Figure 77. X3D scene in Flux browser after pressing cube, cone and sphere buttons
respectively from [63]..89

Figure 78. A listing of the established goals of the X3D-Earth Working Group from
[66]. ..92

 xvi

Figure 79. Rez-generated model of Panama City Florida integrated into MOVES
Savage Studio tool from [68]. The integration of Rez-generated models
into Savage Studio now allows DoD Modeling and Simulation to run
discrete-event simulations over more detailed terrain spaces than was
previously possible...93

Figure 80. The X3D Geospatial Node specification from [69]. Above is a table of
URLs containing references to the specific components, which define an
X3D Geospatial Node. Note that as per the specification there are two
levels of Geospatial Node compliance, levels one and two respectively.
Current, 3D browsers only support level one which does not include a
GeoProximitySensor. ...95

Figure 81. A class tree diagram of the KML 2.1 specification from [71].........................97
Figure 82. Balloon KML element at work within Google Maps from [72].98
Figure 83. A basic KML file showing place mark coordinate and description tags

from [71]. ...98
Figure 84. The identical KML Simple Placemark defined in Figure 83 from [73].

Note that the Simple Placemark is loaded from the Google Earth client-
application at runtime. ...99

Figure 85. This is city level view of a Simple Placemark from [73]. Note that the
KML layer provides city limits boundary data as well as city naming data.
Demographics, crime statistics and much more can also be added as well.
This is where the power of KML really shows itself.......................................99

Figure 86. This is the same Simple Placemark from [73]. Note that this figure shows
the Google Campus at the highest level of resolution in Google Earth
(Street Level) showing its location right in front of the Google Campus in
Mountain View, California. Note the 3D Buildings layer and the building
texturing that comes included as a feature of Google Earth 4 through the
adoption of Collada for 3D buildings. ...100

Figure 87. A comparison of the domains of Collada and X3D from [74]. Note that
Collada is mainly a format for digital content creation and integration into
3D worlds. X3D is a delivery and scene visualization format......................102

Figure 88. An ideal workflow for developing web applications using X3D and
Collada from [74]. Note that Google Earth is in this model as one of the
two main real world applications of Collada. In any future X3D-Earth
initiative Collada can be considered an enabler for rich 3D building
models just as it has worked for Google Earth. ...103

Figure 89. Mashup created by Media Machines from [74]. The figure is showing a
converted Collada (.dae) file shown in the browser as X3D. The mashup
is an Ajax-based extension of Google Maps..104

Figure 90. AT&T Park file available for download from [75]. Nearly all of the files
in the system use the new Google Earth 4 Collada format called KMZ........105

Figure 91. This is a basic outline of the five-step process to import KMZ into Blender
for quick 3D building modeling...106

Figure 92. Location in Blender of new KMZ import functionality once the Google
Earth plug-in is correctly installed...106

 xvii

Figure 93. Imported AT&T Park geometry in Blender. Textures for the model exist
but still need to be manually added in the current version of the Blender
Google-KMZ plug-in. ..107

Figure 94. Diagram from thesis work done by LCDR Travis Rauch in 2006, outlining
the ability of metadata to be used directly in the simulation to drive the
characteristics of entities. Such characteristics might notionally be things
like weapons or flight envelopes and ranges of various DoD platforms
from [77]. ...111

Figure 95. The Earth tiled at two levels of detail (LOD) within an Ajax ZK tab panel
control. ...116

Figure 96. An Ajaxian Tab Panel reporting of checked-out mobile devices/books........117
Figure 97. Diagram showing the basic idea behind LOD tiling from [68]. Note that

as the client zooms in the amount of tiles representing the terrain start to
increase exponentially..118

Figure 98. A diagram of the LOD concept where the image sharpens as the distance
to it decreases from [68]. Note how the target node changes in X3D from
Billboard to IndexedFaceSet to Cone, as the user gets closer to the target
node..118

Figure 99. Step 1: Download Orthographic Imagery from Global Mapper 8 by
clicking Download Free Maps/Imagery from TerraServer on the Global
Mapper home screen. ...119

Figure 100. Step 1a: Select Download Urban Area High Resolution Orthographic
Imagery and then give Global Mapper an urban city and press Ok...............120

Figure 101. Step 1b: City will load tile by tile and the orthographic imagery will be
very high resolution (street level). At this point the user can choose
various means of exporting the orthographic imagery from the File Export
menu, i.e., jpeg, GeoTiff etc. ...120

Figure 102. Step 2: A diagram showing downloaded elevation data. In Global
Mapper navigate to the main menu and choose to view DEM format. The
next step is to export the terrain data for Rez (VRML Elevation is one of
the easier formats to export but most other formats are also supported by
Rez). ...121

Figure 103. A diagram showing Baltimore Harbor DEM data in Global Mapper 8.........122
Figure 104. Step 2b: Under the File->Export menu in the upper-left choose to export

the elevation data in any format but VRML (.wrl file) is typically very
easy and recommended. This is an example of DEM data from the San
Jose area being exported to VRML. ..122

Figure 105. An example of VRML elevation data from GeoMapper once successfully
downloaded from [68]..123

Figure 106. Step 3: Run the imageSlicer to generate tiles at various LOD to match the
specifications and needs of any specific project. Figure 106 showcases a
few of the most important command-line switches that the imageSlicer can
handle. Figure 106 is from [68]. ...123

Figure 107. Step 4: Run Rez to overlay the VRML (or additional format) elevation
data with the LOD image tree to generate X3D. Figure 107 is from [68]. ...124

 xviii

Figure 108. Slide showcasing the various formats that Rez supports for terrain data.
Figure 108 is from [68]. ...124

Figure 109. Slide showcasing the various formats that Rez supports for X3D output.
Note that Geospatial X3D is supported but is still in alpha testing. Figure
109 is from [68]. ..125

Figure 110. Screenshot of Rez imageSlicer running in a terminal. In the lower right
portion of the diagram a file view of the individually sliced tiles is shown
as they might appear in a directory-view on a typical Windows machine.
Figure 110 is from [68]. ...125

Figure 111. In the left section of the diagram, the GUI tool for Rez is shown which
allows a user to set the most common Rez parameters such as levels of
detail or tile dimensions from [68]. In the future, a GUI upgrade for Rez
is strongly recommended. In the right section of the diagram, Rez is
running in the terminal doing the work of overlaying orthoimagery on top
of elevation data and then mapping the result to X3D tiles.126

Figure 112. An auto generated Rez output in X3D of Oakland Harbor from [68].126
Figure 113. A diagram of Nasa World Wind’s current tiling schema from [83].128
Figure 114. Delay Table based on Jakob Nielsen’s Work Outlining Client Patience

Threshold on the Web from [83]. Note that a progress indicator is
typically needed if the client experiences a delay between 1 and 10
seconds...129

Figure 115. Run time screenshot of Google Earth User Interface running on Mac OS X
from [73]. Google Earth runs on most platforms including Mac OS X
while Nasa World Wind runs solely on Microsoft Windows.130

Figure 116. A Google Sketchup model of Alcatraz Island from Google Sketchup.
(2007). Google. Retrieved July 14, 2007 from http://sketchup.google.com.
Sketchup is an excellent 3D modeling tool for allowing “mere mortals” to
create and publish content onto Google Earth. ..131

Figure 117. The Nasa World Wind user interface from [83]. ...131
Figure 118. Task list for the Google Earth vs. Nasa World Wind Usability Study

conducted at the Naval Postgraduate School Scene Authoring for
Advanced Graphical Environments (SAVAGE) Research Laboratory in
2007..132

Figure 119. Average user-time to complete a task between Google Earth and World
Wind...133

Figure 120. Average subject-satisfaction level between geospatial systems in the
Google Earth vs. Nasa World Wind study based on a ten-point scale.134

Figure 121. Average subject-satisfaction chart showing the nearly 2:1 preference
subjects had for Google Earth over Nasa World Wind..................................134

Figure 122. Average time per task in Google Earth and Nasa World Wind Usability
Study. Note that on average World Wind tasks took nearly twice as long
to complete as their Google Earth counterparts...135

Figure 123. An illustration of an Ajax-based front-end specifically designed for the
iPhone from Amazon.com. X3D-Earth could similarly design such an
interface for a sever-side geospatial system. Advantages of the preceding

 xix

are the touch screen interface and haptic controls such as the ability to
zoom in and out by pinching inwards or outwards with finger and thumb
on the phone’s main screen..141

Figure 124. The above code shows a typical Google Maps server-side call. Figure 124
is from [88]. ...142

Figure 125. The above code shows a typical HTTP GET Request for a Query for
Atlanta in Google Maps. Figure 125 is from [88].143

Figure 126. Incoming XML server response after an Atlanta query is issued by the
client-side in Google Maps. Figure 126 is from [88]....................................143

Figure 127. An example of Ajaxian Maps from [89]..145
Figure 128. Google Maps URL Schema for Servlet Calls from [88]. Note the X and Y

dimension and the Zoom Level Requirements. ...145
Figure 129. Google Maps URL Schema for Servlet Calls when Search is requested

from [88]. Note the q parameter requesting that Atlanta tiles be pulled up..146
Figure 130. Diagram from A Technique for 3D Modeling of Buildings from [91].

Both researchers explored the extrapolation of 3D Buildings using
stereoscopic techniques..147

Figure 131. Automatic 3D Building Reconstruction Paper from [92]. This paper
provides an example of leveraging computer vision algorithms to extract
buildings from orthographic satellite data in. ..147

Figure 132. Diagram of notional Aspect Oriented Programming architecture from
AOP. (2007). Wikipedia. Retrieved August 29, 2007 from
http://en.wikipedia.org/wiki/Aspect_oriented_programming. Note the
direction of the arrows showing the injection of functionality at different
joint-points into the application. This paradigm is a big shift from OO in
that AOP lets the application be passive and receive necessary aspects at
runtime instead of calling them directly the old way, (APIs) and
decreasing modularity..154

Figure 133. An illustration of IoC from Fowler, Martin. (2007). IoC. Retrieved
September 5, 2007 from http://martinfowler.com/articles/injection.hml.
The diagrram is showing the IoC framework or assembler creating a
runtime concrete class dependency for a MovieLister based on an XML
descriptor. In the XML descriptor, the persistence type (CSV, SQL, etc.)
is tied to a specific concrete class, i.e., SQLMovieFinderImpl.java or
CSVMovieFInderImpl.java making the MovieLister code much more
reusable and modular. ..155

Figure 134. A high-level view of typical Struts architecture from [18]. Note that there
is a clear separation of concerns between Presentation, Controller, and
Business Logic within the architecture. ...159

Figure 135. A high-level view of a Struts Lifecycle from [18]. Note the common
Struts practice of populating Action forms. Struts is also known as an
Action-based architecture. Also note the native Struts support for both
conversion and validation errors through XML descriptors.159

Figure 136. An example of Struts Action Code on the server-side from [18]. Note that
Struts Actions take a standard HttpServletRequest and

 xx

HttpServletResponse object. The preceding underlines how the Struts
framework effectively takes control of the standard HTML
request/response paradigm and asserts its own control within the scope of
the framework. ...160

Figure 137. The main XML configuration file for Struts telling it what beans to listen
from the client-side forms from [18]. Note that on the Java platform most
Model View Controller Frameworks and Application Servers utilize
XML-based descriptors for their configuration due to code-maintainability
and the ability to hot-deploy in test-environments.160

Figure 138. A diagram showing Struts connection stubs within the Presentation Layer
from [18]. Note the Struts Tags and the call to the Application Layer, i.e.,
the User Bean, in this case. ..161

Figure 139. Spring MVC Architecture from the Spring Framework Home Page,
http://www.springframework.org, Accessed: August 2007. Note the
Aspect Oriented Programming support. ..161

Figure 140. Java code showing a typical Spring Controller from [18]. Note how much
cleaner the implementation of the Spring Controller is than the Struts
method of ActionForms. ..162

Figure 141. A typical Spring Configuration File from [18]. Note the bean to class, or
entity to business-logic mapping taking place in the code.163

Figure 142. A notional Spring JSP Presentation Layer from [18]. Note that the form
paradigm is still used however, it is less archaic in that now the Java
entity-beans map directly to form input fields. As was seen in the
configuration file the beans are subsequently mapped to Java classes on
the server-side. ...164

Figure 143. A summary of Spring Web Flow from [18]...165
Figure 144. A notional Spring Web Flow XML descriptor showing how the Model

View Controller framework can establish logical links between pages to
match the appropriate work flow for enterprise business processes. Figure
144 is from [18]. ..165

Figure 145. A modern day (JSF) Java Server Faces architecture from [18]. Note that
the Presentation, Application, and Business Logic layers are still
separated. Also note, that validation and most importantly event-handling
have been added...166

Figure 146. A basic JSF entity bean from [18]. Note the JSF implementation of beans
is clean and comprised of mainly setters as might be expected.....................166

Figure 147. A typical JSF Configuration File from [18]. There is nothing particularly
ground- breaking here just more beans mapped to classes and to a
particular scope, i.e., session, request or response. It is of note that the
new Seam framework from JBoss lets developers extend scope to
transactions, which adds scopes such as contextual, transaction, and
business process to the list of available scopes..167

Figure 148. An example of a notional (JSP) Java Server Page containing JSF at the
Presentation Layer from [18]. ..168

 xxi

Figure 149. Real world application of JSF standard web controls from [18]. Note how
rich the client-controls are compared to traditional HTML controls. In
JSF, each control has event listeners and properties that can be changed
with backing beans such as a session bean or an entity bean.169

Figure 150. A listing of new features in JSF 1.2. Glassfish, JBoss, Web Sphere and
most other Application Servers now offer full support for JSF 1.2. Figure
150 is from [18]. ..169

Figure 151. A listing of MVC architecture evaluation criteria from [18]. This is part
one of three. ...170

Figure 152. A listing of MVC architecture evaluation criteria part from [18]. This is
part two of three. ..170

Figure 153. A listing of potential MVC architecture evaluation criteria from [18]. This
is part three of three. ..171

Figure 154. A comparison of List Screen, i.e., paginated data feasibility comparison
between MVC frameworks. Figure 154 is from [18].171

Figure 155. A comparison of the ease of ensuring operational Book marking, by
correctly handling dynamic state, in various MVC architectures. Figure
155 is from [18]. ..172

Figure 156. A comparison of validation schemes in various MVC architectures from
[18]. ..172

Figure 157. A comparison of Testability in various MVC architectures. Figure 157 is
from [18]. ...173

Figure 158. A comparison of how Posts and Redirects are handled in various MVC
architectures. Figure 158 is from [18]...173

Figure 159. A listing of the various frameworks that can plug-in to Spring due to its
inherent flexibility. Figure 159 is from [18]. ..174

Figure 160. A comparison of the ability of various frameworks to support web site
internationalization, or the ability of the site to be shown in various
configurations for different languages. Figure 160 is from [18].174

Figure 161. A comparison on how easily various MVC frameworks can template their
respective presentation layers. Figure 161 is from [18]................................175

Figure 162. A comparison of the amount of development tools available in various
MVC architectures. Figure 162 is from [18]. ...175

Figure 163. A chart listing the various tools available in modern MVC architectures.
Note that JSF and Struts are currently most prevalent frameworks. Figure
163 is from [18]. ..176

Figure 164. Slide showing developer job-market concerns that might face influence
their decision when choosing to learn a new Model View Controller
framework. Figure 164 is from [18]. ..176

Figure 165. A chart showing Dice (Employment Web-site) Job Count Demand by
MVC Architecture. Figure 165 is from [18]. ..177

Figure 166. A chart showing various opinions on MVC throughout industry. Figure
166 is from [18]. ..177

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

LIST OF ACRONYMS AND ABBREVIATIONS

Ajax Asynchronous Java and XML

Ajax3D Ajax, the DOM and the SAI working together to refresh the X3D
Scene graph asynchronously

AT/FP Anti Terrorism Force Protection

ATI Array Technologies Incorporated

CBT Computer Based Training

COLLADA COLLAborative Design Activity

Comet Design pattern allowing for server to asynchronously send data to
the client, aka Reverse-Ajax

COTS Commercial Off the Shelf Application like Oracle

CSS Cascading Style Sheets

CSV Comma Separated Value Flat File

DCC Digital Content Creation

DEM Digital Elevation Map

DHTML Dynamic HTML

DISA Defense Information Systems Agency

DoD Department of Defense

DoN Department of the Navy

DOM W3C Document Object Model

Dojo Ajax Framework

DOS Attack Denial of Service Attack

DHTML Dynamic Hypertext Markup Language

DTD Document Type Definition

DTED Digital Terrain Elevation Data

DTS Data Transformation Service, ala SQL Server

DWR Direct Web Remoting

Echo2 Server-Side Centric Ajaxian Framework

EE Enterprise Edition, ala the Java EE 5 Enterprise Edition

EJB Enterprise Java Bean

EDS Electronic Data Systems

 xxiv

ERP Enterprise Resource Planning Software like SAP

FOAP Feel Of A Place

GIG Global Information Grid

GPL GNU Public License

GWT Google Web Toolkit, Client Centric Ajaxian Framework

GZIP GNU Zip

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HRMS Human Resource Management System

IIS Internet Information Server

IP Internet Protocol Address

JAVA EE Java Development Suite For the Enterprise

JDK Java Development Kit

JNI Java Native Interface

JSP Java Server Pages

JSTL Java Standard Tag Libraries

JSON JavaScript Object Notation

KML Keyhole Markup Language

KMZ Keyhole Markup Language Zip File

LOD Level Of Detail

Mashups Web Sites from Other Web Sites, i.e., HousingMaps.com using
Google Maps and Craigslist data to display Real Estate data

MOVES Modeling, Virtual Environment and Simulations Institute

MVC Model View Controller

Navy M&S Navy Modeling & Simulation

NATOPS Naval Air Training and Operating Procedures Standardization

NCW Network Centric Warfare

.NET Microsoft’s Enterprise Level Development Suite

NMCI Navy/Marine Corps Intranet

NPC Naval Personnel Command

OR Object Relational Mapping, i.e., Hibernate or Toplink

OS Operating System

 xxv

OSD Office of the Secretary of Defense

POJO Plain Old Java Object

REST Representational State Transfer -RESTful Web Services

Reverse-Ajax A methodology of using a local web server running on the client-
side, which allows for illusion of offline connectivity in Web 2.0
applications

REZ Tool to overlay 3D Imagery with Orthographic Imagery sliced to
varying levels of detail

RPC Remote Procedure Call

RSS Real Simple Syndication

SAI Scene Access Interface

SAN Storage Area Network

SAVAGE Scenario Authoring and Visualization For Approved Graphical
Environments

SMAL SAVAGE Modeling Analysis Language

SOP Standard Operating Procedure

SOAP Simple Object Access Protocol

SQL Structured Query Language

TCO Total Cost Of Ownership

URL Universal Resource Locator

USGS United States Geological Survey

VRML Virtual Reality Markup Language

VV&A Verification Validation and Accreditation

Web 2.0 New Internet Paradigm Stressing Social Networks, Blogs, and
Increased Interactivity ala Ajax

Wiki Collaborative Website that can be edited by anyone

W3C World Wide Web Consortium

WGS World Geodetic System

WYSIWYG What You See Is What You Get

XAP Extensible Ajax Platform

X3D Extensible 3D Graphics

X3D-Earth Extensible 3D Graphics Earth Project

XFN XHTML Friends Network

 xxvi

XML Extensible Markup Language

XSLT Extensible Style Sheet

XSS Cross-Site Scripting

XSRF Cross-Site Request Forgery

ZK Ajax Framework, Server-Centric

 xxvii

ACKNOWLEDGMENTS

I want to thank my family first and foremost for their utmost support ever since I

was a child when my interest began for computing in general. I want to thank Associate

Professor Don Brutzman as well for his unending amount of encouragement and support

and great perspective on life.

Furthermore, I want to thank Dr. Byounghyun Yoo, from the Korean Institute of

Advanced Science and Technology for helping me work a few bugs out with Rez and

teaching me a lot about geospatial data and X3D Level of Detail nodes. I also want to

acknowledge Tony Parisi and Dave Arendash for their work with Ajax3D and for their

informative Flux based examples on their Ajax3D.org website. Finally, I want to thank

NPS Research Associate Don McGregor for his support in answering my many local

intranet questions that were critical to standing up my first Ajax prototype web

application.

 xxviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PROBLEM STATEMENT
The problem space that this thesis solves is determining the appropriate

technologies for DoD Modeling and Simulation with respect to Web 2.0 and Ajax. The

intent is to seamlessly integrate towards Web 2.0, while still remaining Global

Information Grid (GIG) compliant. This thesis also determines the appropriate server-

side technologies for use within the Extensible 3D-Earth (X3D-Earth) initiative at the

Naval Postgraduate School.

B. MOTIVATION
The motivation behind this thesis is to provide improved geospatial systems and

richer web site experiences for Department of Defense (DoD) employees. The

minimization of vendor lock-in and a lower Total Cost of Ownership (TCO) for DoD IT

Systems is also desired.

C. OBJECTIVES
The objectives of this thesis are to explain the technologies behind Ajax, Ajax3D,

and Web 2.0 and how they are not only compatible with the GIG but also how they can

help further DoD web and DoD modeling and simulation applications in the future. The

limitations of Ajax and Web 2.0 are also discussed with specific performance and

security issues in mind.

D. OVERVIEW

As of 2002, the Deputy Secretary of Defense defined a new directive to do

business over the network for the Department of Defense.1 Coined GIG by the DoD

Chief Information Officer (CIO), it has since become the most important point of

strategic guidance for DoD IT management to follow to ensure that interoperability is

maximized and that the DoD is not investing in monolithic systems that cannot “talk” to

1 Global Information Grid. (2007, May 19). In Wikipedia, The Free Encyclopedia.

2

each other. Additional goals include minimizing the “Fog of War” on the battlefield by

improving situational awareness through improved messaging-interoperability and more

effective Network Centric Warfare (NCW). NCW has four basic tenets:

• A robustly networked force improves information sharing.

• Information sharing enhances the quality of information and shared
situational awareness.

• Shared situational awareness enables collaboration and self-
synchronization and enhances sustainability and speed of command.

• Each of these, in turn, dramatically increase mission effectiveness by
military forces.

The GIG concept was a direct result of the NCW doctrine, which was mandated by

Office of the Secretary of Defense (OSD) in 2002 through overarching directive 8100.1

GIG Compliance2. The directive states the GIG-compliant systems need to be joint and

interoperable (Figure 1), among other things. Since that time, Extensible Markup

Language (XML) technologies have emerged as the leading choice for DoD project

managers to achieve GIG interoperability.

4.1. The GIG shall support all DoD missions with information technology, for
national security systems, joint operations, joint task force (JTF), and/or combined-task
force commands, that offers the most effective, efficient, and assured information
handling capabilities available, consistent with national military strategy, operational
requirements, and best-value enterprise-level business practices.

4.2. The GIG shall be planned, resourced, acquired, and implemented in accordance
with the DoD Directives System 5000 series for DoD issuances; DoD Directive 7045.14
(reference (d)), and planning, programming, and budgeting system (PPBS). The
Department of Defense's Information Management Strategic Plan

4.3. GIG assets shall be interoperable, in accordance with approved requirements
documents, and compliant with the operational, system, and technical views of the GIG
architecture.

Figure 1. A partial listing of GIG policy requirements from OSD.

2 Department of Defense Directive 8100.1. (2002, September 19). GIG Compliance.

3

The Defense Information Systems Agency (DISA) has banked on XML being a

vital part of the GIG.3 An easy integration between DISA, the GIG and XML are Web

2.0 technologies. The term Web 2.0 was first coined by O’Reilly Media in 20034 and,

though not formally specified, has since then grown into a household name within the

context of the world of web development. Web 2.0 advocates the heavy usage of

Convergence, XML and Web Services. Web 2.0 applications are often considered to be

“social,” i.e., providing the user with a richer experience and more intuitive interfaces.

The upcoming Web 3.0 is considered by many to be semantic in which a web application

knows the context of what people are looking for and can adjust its behavior accordingly.

In Web 2.0, Convergence is often synonymous with “Mashups,” or the amalgamation of

data from several web sites to make an entirely new site entirely. Representative real-

world examples of Convergence include Google Maps Mashups, such as

HousingMaps.com or Markovic.com, and News Mashups, such as Digg Spy. Figure 2

presents a “mind-map”5 diagram of the Web 2.0 concept. Note that Ajax is a key

component and the relative size-to-importance ratio within the mind-map.

Figure 2. Web 2.0 Mind Map from [4]. In this new contextual definition technique the

word to be defined is centered while the words, which define it, are clustered around the
word and sized proportionally to their importance.

3 Loring Werbel. (2005, August 8). XML Hardware to Power DoD's GIG Security Gateway.
4 Web 2.0. (2007, May 30). In Wikipedia, The Free Encyclopedia.
5 Mind map. (2007, July 24). In Wikipedia, The Free Encyclopedia.

4

Figure 3. Web 2.0 Treeview of Figure 3 from [4]. The arrows define parent-child

relationships within technologies. For example, XMLHttpRequest is the parent
technology behind Ajax.

The technologies that are critical to making Ajax and Ajax3D work are the World

Wide Web Consortium (W3C), Document Object Model (DOM), which takes HTML

(Hypertext Markup Language) and encapsulates it into a tree-like data structure where it

can be more efficiently accessed, and the 3D scene graph. The scene graph takes all the

information that a 3D scene requires and implements the same DOM-like organizing

principle on the data, storing it in a tree structure with parent and child nodes. The DoD

can currently use Ajax6 as an enabler in web applications, both in 2D and 3D, by

dynamically altering the DOM and/or an X3D scene graph. Ajax allows the developer to

write client-side code to call the server-side whenever they want, not just when a form is

submitted or a back button is pressed. Furthermore, Ajax allows the web application

developer to access myriads of Ajax web control libraries, i.e., widgets in a component–

based, event-driven model via APIs. Such widgets can asynchronously drive a future

X3D-Earth server-side implementation by providing rich controls to drag and drop

geometry from pre-populated drop-down menus into the X3D space, or intelligently auto-

suggest on city searches by mapping partially submitted user input to persistent city-data

in the presentation layer. In a way, a widget can be considered a rich-component that

exists on the web page, i.e., an example might be a Calendar control that is already coded

6 Ajax (programming). (2007, August 26). In Wikipedia, The Free Encyclopedia.

5

for validation and acts just like a calendar. Such controls come already assembled in

modern Ajax frameworks and are available for the developer to call at will, most often

with a simple html tag instead of thousands of lines of code.

Widgets come in all shapes and forms such as Calendars, Textboxes, Paginated

Data Grids, et al. A component based model, such as ZK or Google Web Toolkit

(GWT), with widgets, is currently widely recognized within the industry as being a “best

practice” so much so that in December of 2006, Newsweek Magazine put out an article

proclaiming 2007 to be the “Year of the Widget.”7 Widgets are even starting to invade

the desktop operating system as can be seen in Figure 4. Ever since Mac OS 10.4

“Tiger” was released three years ago, Apple customers have enjoyed Dashboard, which is

an Application on the Dock, which lets users customize their own workspace with helpful

utilities called widgets. The widgets typically cover domains such as weather, stock

reports, and news. Since it’s inception, Dashboard has become one of Apple’s biggest

successes with Mac OS X. Furthermore, Dashboard will continue to play a huge role in

Apple’s next release of OS X 10.5, deemed “Leopard.” In Leopard, a new technology

called “Web Clip” will allow the client to make a widget out of nearly anything that is

dynamic on the web. Ajax is clearly the leading technology behind the use of widgets on

the web and looks to be so for a long time to come. X3D is currently the leading open

source standard for 3D Graphics on the Web. DoD Modeling and Simulation can also

benefit from this “widgetization” by applying it conceptually in 2D, and in 3D, in what

has been coined Ajax3D which is a technique that, albeit is in its infancy, might allow

event-driven dynamic access to an X3D scene graph without any scene refresh on the

client-side X3D browser.

7 Brian Braiker. (2006, December 30). The Year of the Widget?

6

Figure 4. The Dashboard application on Mac OS X “Tiger” showing one user’s

particular widget setup. Note the weather widget near the bottom of the screen and the
Radio Paradise Web Site widget, which is using Real Simple Syndication (RSS)8 to

obtain streaming data. RSS is an XML-based data format typically used to stream blog
information, news, and podcasts.

Figure 5. An example of an Ajax Component or “widget” from the Dojo Toolkit

library9. This widget is called a fisheye control and is embeddable in any web
application. If the widget looks familiar, it is the same type of user interface that Apple

uses for their Dock in OS X “Tiger.” Previously, components such as the fisheye control
were not practical to implement on the Internet.

8 RSS. (2007, August 23). In Wikipedia, The Free Encyclopedia.
9 Dojo Toolkit Fisheye Demo. (2007, September 14). Dojo Toolkit Homepage.

7

Such features can be critical for integration into an open source server-side 3D

geospatial system implementation, something that currently does not exist but that the

DoD can use. Imagine a soldier in the field being able to pull up 3D terrain data with

overlays in the field on a GPS-Enabled mobile device. Such a device might currently be

akin to a Blackberry or iPhone. X3D models automatically generated by Rez, an open

source orthographic image tiling tool, might feed a server-side (read Web-Based) open

source geospatial system similar to Google Earth but free of licensing costs for the DoD.

Google Earth started after Google acquired a small start-up company named Keyhole.

Keyhole was an innovator in the field of Web-based Geospatial Technologies and had

created an XML based format for overlaying information on top of 3D terrain geometry.

The format was named Keyhole Markup Language (KML). Similarly, for the X3D Earth

initiative, information layers might be overlaid on top of X3D scenes by combined

support for KML. Layers allow for users to see landmark data, demographics, zip codes,

and an endless possibility of data relating to the overhead terrain they are currently

viewing. Currently the use of Ajax is most well known in the 2D Google Maps

Application that has recently garnered worldwide attention due to its ability to allow

users to navigate even at the street level, a technology Google calls Street View. Due to

its Ajax nature, i.e., loading only parts of the page that need updates, Google Maps

performs well on today’s smart phones like the iPhone.

If 3D is ever to be realized on the server-side, Ajax can be an important addition

to its success considering that in such a system the demands on the network might

increase by orders of magnitude. By utilizing a fleet of vans and driving through

metropolitan areas with their new Street View technology, Google has pioneered a new

type of application and is pushing the boundaries of Ajax and Web 2.0. It is time for

DoD Modeling and Simulation and DoD IT in general, to start leveraging that same

power. As you read this, industry is already shifting towards a web-based applications

approach10, which is only made possible by Ajax being the enabling technology. In fact,

Microsoft has begun an effort to attempt to port its entire Office Suite to the Web in what

is known as its “Live Strategy.”11

10 Michael Calore. Microsoft Sees a Mixture of Desktop and Delivered in its Future.
11 Microsoft Premiers First Live Strategy. (2005, November 1). Microsoft.

8

Figure 6. A Rez auto-generated X3D view of the San Jose metro-area created using

open source tools Rez and imageSlicer.

The new server-side Ajax request paradigm of keeping a record of the client’s

current DOM state on the server and tracking any client changes to their own DOM so

that only the actual changes traverse the network, and not the entire DOM tree is a key

enabler in the effort to make server-side 3D a reality. Ajax also has two offline variants

that give the user the ability to work offline as if they were online, i.e., Server Push/Pull

(Dojo framework) or Reverse Ajax (Dojo/Comet). Server Push/Pull is basically the idea

of polling the server or sending periodic updates or heartbeats to the client in low

bandwidth domains, which in turn consumes less bandwidth than a normal connection.

Reverse Ajax works by installing a small piece of client-software on the user base

machine, which acts as a local web server. From that point, the technology runs the web

application client-side by simply using the general local host or (loopback) interface at

127.0.0.1 creating the illusion of connectivity while saving state data to the client as well.

Once the client is again connected to the Internet, Reverse Ajax pushes all the saved state

9

back to the various web sites in question. From a DoD perspective, the preceding can be

a significant change in the way business is done, as being actively connected will

occasionally not be necessary to do work. By using Server Push/Pull or Reverse Ajax,

the DoD might be able to provide rich client-side web applications to low bandwidth

customers such as forward deployed units, be it the soldier in the field on a mobile device

or a sub surface platform.

Figure 7. New Google Maps Street View from [12], showing panoramic view of Times

Square. Google Maps12 is the most famous real-world application of Ajax technologies.

For the GIG, open source technologies are the future. History tends to repeat

itself, if one never learns from it, and the DoD does not have the best historical record

acquiring IT Systems that are of moderate cost and provide adequate interoperability.

Over the past few years, the DoD, and particularly the Navy have made critical mistakes

in their decision to implement an enterprise-level proprietary solution in Navy and

Marine Corps Intranet (NMCI), so much so that NMCI hate-blogs have been established

by the end-users who work in the environment every day. By contracting out critical IT

infrastructure and administrative privileges to Electronic Data Systems (EDS), many

commands find it unnecessarily harder to do their daily work. No matter how much the

DoD wishes to “make it so” declaring a set of Dell hardware and Microsoft enterprise

applications be the only thing officially on the network is not an architecture. Further

12 Google Maps StreetView, Google Maps.

10

disturbing is the NMCI commitment to Microsoft being the panacea for enterprise

solutions within DoD. The more sensible approach to the preceding dilemma is not to

entirely dispose of the idea of out-sourcing IT requirements and using proprietary

software but rather to inject outsourcing into the enterprise where it makes sense and to

utilize open source where it makes sense. Recently, a new directive from the Department

of the Navy (DoN) CIO has actually made some progress in this area13. The word sense

is used here in terms of general financial cost, security, and maintainability. The current

DoD approach is to essentially “paint the walls” with Microsoft from top to bottom and

not worry about saving huge amounts of capital by leveraging open source. DoD must

also recognize that Microsoft is hardly an innovator within the industry and more often

than not their products are not “best of breed,” but rather mediocre attempts to copy the

current industry “best of breed.” One needs to look no further than how Windows Vista

looks strikingly similar to Mac OS X, which was released years earlier.

In 2002, at Navy Personnel Command (NPC), in Millington TN, the transition to

NMCI can only be described as a disappointment. Password resets took hours on

average, the security scheme was extremely draconian (no client-side privileges at all,

even if you had to install anything as a developer to work). Furthermore, NMCI

scheduled network software pushes to client-machines during working hours, so if the

end-user had to suddenly access their PowerPoint for a presentation they were denied

machine-access until NMCI was finished with the remote install. During the initial

deployment at NPC, NMCI also forgot a few fundamentals on the hardware-side as they

issued laptops to enlisted detailers without any way to secure them in their docking

stations then later found them missing after being stolen during the night. Any time a

deployment within the enterprise is referred to as a verb in the negative context, the

deployment is probably not going as well as originally planned.

Another example of proprietary solutions turning into disasters was the Sea

Warrior initiative that was well on its way at Navy Personnel Command in August of

2002. Sea Warrior encompassed a new and ambitious human capital approach to

empowering and educating the sailor to, in effect, have more power over the assignments

13 Joe Barr. (2006, July 7). Navy Open Technology Development Roadmap.

11

process. In certain cases of special assignments with undesirable geographic locales the

sailor proceeded to actually “detail themselves” to a large degree (read bid for jobs ala

eBay). In this bidding architecture, the bonus for accepting the billet turned into an

auction with the sailor bidding the lowest getting the desired billet. The other primary

tenet of Sea Warrior was to automate the slate of jobs that an individual sailor might see,

as available, thereby letting a sailor “detail themselves” in theory at least. The preceding

was accomplished by matching a sailor’s experience and education to a five-vector model

and having the application accordingly pull up a list of the most appropriate billets.

The only problem with Sea Warrior at NPC was that the project’s leadership was

too intent on making the Navy’s requirements fit into the Commercial Off the Shelf

(COTS) product and not the other way around. The Sea Warrior Project at NPC suffered

from a large requirements impedance mismatch that was never addressed. As is always

the case, it is wise to surround oneself with people who will tell you “No.” The

preceding was the exception and not the rule with the leadership heading this new

initiative. Under the Sea Warrior Project, PeopleSoft an Enterprise Resource Planning

(ERP) company ala SAP was chosen as the platform on which this new concept or

Human Resource Management System (HRMS) might be drawn out. However, three

years, later in 2005, Larry Ellison gave PeopleSoft 10.3 billion reasons to quit and

acquired the company under Oracle. The result of the preceding was effectively the

death of the Sea Warrior Project at NPC, owing to the fact that 125 million dollars had

already been spent coding Sea Warrior in the HRMS module using PeopleSoft’s

proprietary code. In retrospect, the project was doomed to failure either way since it had

some of the worst requirements creep that one might imagine. Disruptive technologies

are a nice driver for a new project, but at some point, requirements need to be frozen for

the good of the life of the project. If the preceding does not happen a project typically

dies and leaves only a heap of PowerPoint behind as remains. The same classic situation

that one reads in software engineering texts from the 80’s happened at NPC and three

years later they were no closer to having anything tangible than when they started.

After the acquisition by Oracle, all of NPC’s PeopleSoft code had become much

more useless, unless of course NPC had even more money to commit to Oracle HRMS

conversion tools or simply buy the Oracle HRMS altogether and recode the application.

12

Contrary to the belief of many at NPC, the takeover of PeopleSoft was hostile. While

Oracle currently supports legacy PeopleSoft applications, through the usage of expensive

conversion tools make no mistake that, in the future, the preceding will only get more

costly as Oracle views PeopleSoft as a legacy system. Due to the rising costs of

maintenance, the customer will eventually be forced to either “jump ship” or migrate to

another vendor. A third choice might be to simply cave-in to the Oracle lock-in

nightmare. Such is the problem with COTS and therein lies the motivation to maximize

open source throughout the DoD enterprise.

The point of the previous story of a real world experience is not to belabor the fact

that Oracle or Microsoft are inferior to open source or that outsourcing is unequivocally

bad. Microsoft is actually a very good alternative to open source for a number of

enterprise situations since nearly all of their products will be tightly integrated with the

Operating System (OS) on the server-side if you are running Windows Server 2003 or

any enterprise-level OS that they sell. Examples of the preceding might be the Data

Transformation Service (DTS) in Microsoft Structured Query Language (SQL) Server

that lets the Database Administrator (DBA) schedule complex tasks in the database using

a GUI drag and drop What You See is What You Get Interface (WYSIWYG). The DTS

is automatically integrated into the OS Scheduler so that no batch files handling complex

data transactions at night need to be maintained. Figure 8 is a screenshot of a typical

DTS Workflow.

13

Figure 8. DTS Interface in Microsoft SQL Server 2000 showing various stages of
dataflow. DTS is useful in SQL Server because it tightly links data processes with the

operating system scheduler since both are Microsoft products.

The point of this case study is to illustrate that proprietary solutions are not

always the best way to go. At the enterprise level, open source technologies are currently

at the point where they are mature enough to be deployed in mission-critical

environments such as the DoD’s GIG. Private industry has already adopted open source

with open arms, owing to several reasons but most importantly the significantly lower

Total Cost of Ownership (TCO) during the lifecycle of the application due to

significantly lower licensing costs and a reduction of vendor lock-in. Examples of

successful case studies include the transition from .NET to the Java Enterprise Edition

(EE) platform by eBay.com in 2003, and the transition of MLB.com to Java EE.

E. THESIS ORGANIZATION

This work is oriented towards applied technology. Because the problem space is

so wide it is intended to give a cross section of the issues that a software development

manager can potentially face in the DoD when a slick contractor comes in and proposes

that their new Ajax Framework is the “best,” or that Ajax is the solution to all of the

enterprises woes. Furthermore, on the 3D side, it is meant to show the potential Ajax has

in being a founding technology for a truly server-side 3D geospatial system. It is the

author’s intent that someday a proof-of concept geospatial system be written for the DoD

14

to utilize royalty-free content and open standards like the X3D specification. This work

serves as a starting point, with which both DoD IT and DoD Modeling and Simulation

can start to explore Ajax and incorporate Ajax methodologies into their respective 2D

and 3D applications where they give the sailor or soldier great training value.

Chapter III focuses on giving the reader a brief introduction to Ajax technologies

and its Dynamic HTML (DHTML) roots. An outline of the five technologies that

encompass Ajax is presented along with high-level views of typical Ajax architectures.

A juxtaposition of classic and Ajax web application models is then presented to the

reader. Finally, a discussion of the pros and cons of current popular Ajax frameworks is

given.

Chapter IV focuses on giving the reader a brief introduction to Ajax performance

issues. An outline of the various forms of JavaScript compression is introduced along

with methodologies of minimizing JavaScript white space. The avoidance of invoking

expensive JavaScript method calls is also discussed along with a graph showing the

impact of several of the most egregious offenders. Finally, a discussion of how different

browsers are good at certain data-tasks, but not so much with other tasks is introduced.

By reading the chapter, the reader can gain an appreciation for the importance of

knowing the end user as to optimize their online experience by targeting development for

the browser that is used by the largest number of clients.

Chapter V describes Ajax security and JavaScript security in general. The chapter

first introduces the Sandbox or “Server of Origin” concept to the reader, which is

essential to understanding how modern day server-side scripting attacks work. From that

point, Cross Site Scripting (XSS) is discussed along with modern day examples. Cross

Site Request Forgery (XSRF) is then introduced along with the real life example of the

Samy Worm that hit MySpace.com in 2005. Finally, a discussion of the most popular

methods of preventing Scripting Attacks is discussed, and applied towards the real world

example of how Google responded to a Gmail vulnerability in 2006.

Chapter VI focuses on good design paradigms or patterns for Ajaxian Web

Development. An outline of the popular Representational State Transfer (REST)

architecture for Web Services is discussed which can currently be seen in practice on

15

such sites as eBay and Amazon. The focus is then shifted to the other major Web

Services Paradigm, Remote Procedure Call (RPC) and its variants such as XML-RPC and

Ajax Stub of which Flickr is the most notable spin-off. From that point, the HTML

Message Pattern and XML Message Pattern are discussed which have been made most

popular by Google Maps, and their set of APIs.

Chapter VII introduces Ajax3D, which introduces the reader to the abstraction of

the Ajax concept to three dimensions. A brief description and diagram of the X3D Scene

Access Interface (SAI) is first presented to the reader as a conceptual tool with which to

understand how Ajax works in the 3D realm. From that point, a discussion of how to

appropriately leverage the current XML standard for describing terrain, Keyhole Markup

Language (KML) into the X3D-Earth project is undertaken. Following the preceding two

exemplars are presented to the reader. The first being a basic “Hello World” example in

Ajax3D and the second being a more complex Dynamic Scene Creation Model.

Chapter VIII focuses on the current X3D-Earth initiative at the Naval

Postgraduate School and outlines how Ajax methods can be applied to further solve this

problem. The chapter begins with a quick overview of the X3D-Earth initiative at the

Naval Postgraduate School along with a short overview of the current Geospatial node

specification. The chapter discusses current KML specification and goes on to describe

how it is tightly integrated into Google Maps. From that point, the new KMZ or zipped

Collaborative Design Activity (Collada) format is introduced as a fast way to build 3D

building overlays as seen in Google Earth. The focus is then shifted to how Collada can

complement the X3D-Earth initiative by allowing for easy imports of 3D buildings.

Chapter VIII also introduces the reader to Google’s 3D Warehouse Repository and

compares and contrasts Google’s 3D archive with the Savage Studio archive managed by

the Modeling and Virtual Environments For Simulations (MOVES) Institute at NPS.

Specific topics discussed include the importance of meta-data within 3D repositories and

licensing issues that come with the utilization of 3D Warehouse models. Finally, a

methodology for importing X3D Geometry from the KMZ format into Blender is shown.

Chapter IX discusses Rez, and open source enabler for X3D-Earth. Rez is a tool

for overlaying tiled high-resolution orthoimagery on to X3D terrain data.

16

Chapter X focuses on usability within geospatial systems. In particular, it

describes a usability study that was done at the Naval Postgraduate School between

Google Earth and Nasa World Wind in 2007. The focus of the chapter begins with a

description of the methodology along with a copy of the task list presented to each

subject. The full results in terms of system preference and time to complete each task are

then presented for the reader in both tabular and graphical forms to evaluate at their own

discretion. Finally, a discussion of the results and a series of recommendations is

presented based on the recorded video, task completion times, and the pre and post-

assessment questionnaires administered during the study.

17

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION
This chapter seeks to give the reader a background into previous research efforts

on the server-side along with a brief introduction to Ajax technology, JavaScript and the

pros and cons of various Model View Controller (MVC) frameworks. A program manger

might most likely have to ultimately decide if embarking on a new Java web application

for the DoD which of the best MVC frameworks meets the needs of their situation in the

best manner. The MVC framework is the background and foundation needed to

successfully leverage any web application in Java by separating the data layer (data and

code) from the presentation layer (html). The preceding effectively stops programmers

from creating convoluted code bases that are impossible to maintain or find experts on

since the code might not have standardized structures (design patterns) behind it. Once

an appropriate MVC framework is chosen and implemented the IT Manager can then

fully leverage the power of Web 2.0 and easily incorporate Ajax, Ajax3D, Web Services

or any other component on top of the framework with a much lower chance of project

failure. While the choice of application server platform is also very important, most web

applications can be successfully ported between application servers. Therefore, the initial

choice is not nearly as critical as with MVC as it does not code the project into a corner.

The most popular Java web application servers today include Apache Tomcat, Web

Sphere, JBoss, and most recently the Sun Glassfish Project.

B. BACKGROUND
Ajax is essentially a new type of HTTP (Hypertext Transfer Protocol) request

called XMLHttpRequest that allows the server to keep track of the W3C Standard

Document Object Model (DOM) for the client. Whenever, the client updates a page, or,

in some frameworks, a section (zone) of the page, the XMLHttpRequest object sends an

asynchronous request back to the server in order to rectify the differences between the

client DOM and the server DOM. Once the differences are rectified, the

XMLHttpRequest object allows the DOM on the client side to dynamically update rather

than be entirely refreshed, and the client observes the preceding as an instantaneous

18

change rather than a time-consuming page refresh. JavaScript is an essential keystone in

the Ajax framework in that it is what is required to do the DOM manipulations on the

client side. Figure 9 shows a simple diagram describing a typical Ajax architecture14 on

the client and server-side.

Figure 9. A Basic Ajax Architecture from [14]. Note the Ajax Engine, which serves as

an intermediary between the JavaScript calls and actually returning server-side data. In
most modern frameworks, the Ajax Engine abstracts-away JavaScript from the developer

and lets them stay completely in Java.

Ajax does incur a network bandwidth overhead as, at times, complex JavaScript

needs to be sent over from server to client. Comet15 or Reverse Ajax is also a major

consideration when dealing with any requirements that may need asynchronous behaviors

on either the client or server side. Comet technology allows the server-side to push data

asynchronously to the client–side. Comet technology is currently more cutting-edge than

Ajax but the two domains complement each other well. Comet seeks to eliminate

unnecessary requests by the client for new information by having the server push the data

only when the user needs it in a “Just In Time” fashion.

In September 2003, Capt. James D. Neushul, USMC, wrote a landmark thesis. In

his thesis, he basically created a running web server that downloaded DTED (Digital

14 Basic Ajax Architecture, TopCoder.com.
15 Comet (programming). (2007, August 26). In Wikipedia, The Free Encyclopedia.

19

Terrain Elevation) data for any requested region and build X3D from it16. Capt. Neushul

used a DTED data to X3D via XSLT (Extensible Stylesheet Transformations) approach

to generate the X3D terrain dynamically. At the time, this was a remarkable first for

X3D and a good step towards what today is the X3D-Earth Initiative. While the thesis

was outstanding, the methodology still had no way to overlay the terrain data with

detailed imagery in any efficient manner other than manual addition. Figure 10 is a

screenshot image taken of Capt. Neushul’s thesis work in action, note the tiling and the

geospatial annotations displayed:

Figure 10. An automated view of DTED data in X3D using James Neushul’s server-side

DTED-to-X3D solution from [16].

16 James Neushul, Interoperability, Data Control, and Battle space Visualization Using XML, XSLT,

and X3D. Master’s Thesis, Naval Postgraduate School, Monterey, California, September 2003.

20

Figure 11. An architecture of Capt. Neushul’s server-side XML solution for DTED data

to X3D from [16].

JavaScript is the engine behind the ability to use Ajax as it is essentially what

allows the client side browsers to become (rich, fat, etc…) Current Ajax frameworks

have abstracted the JavaScript out of the hands of the programmer and automate client-

side scripting with translation engines (ZK, GWT, Echo2, Dojo). However, if it is

absolutely necessary modern Ajax frameworks are still flexible enough to allow the

programmer to dive in and actually have to code in JavaScript.

21

Figure 12. An example of a Model View Controller architecture from [17]. Model View

Controller is a framework used to make web applications more modular by taking code,
which historically resided in the Presentation Layer and porting it to the Application

Layer. In this paradigm, the Model represents the data, and the presentation layer is the
view. The controller handles the business logic.

C. MODEL VIEW CONTROLLER (MVC) BASED ARCHITECTURE

The MVC architecture17 is a way of ensuring that the various employee(s) who

develop or maintain a new or existing web app do not trip over themselves and write code

that is intertwined and spaghetti-like because they ignored minimizing business logic in

their web pages. One can think of the MVC concept as an “orange” where the goal is to

serve various slices of an orange to hungry customers. The mechanism for providing the

slices to the customers be it a knife or ones fingers to peel the slices can be the Controller

in this case. The outer shell of the “orange” that people see might be the View. Finally,

17 MVC Architecture Summary. (2007, August 17). PHP.net.

22

the actual “orange meat” itself is the Model. In the case of an orange what users really

care about is how easy it is to get to the Model or the data. For a web site, that goal is

data or information which typically rests on a backend database of some type be it

Oracle, SQL Server, PostgreSQL or MySQL. So to repeat, the Model for a website is the

data that drives it. The View just like the “orange peel” is basically what the client or

user sees to get them to where they need to be in order to access the model. Just like the

“peel” the View sits on top of the Model but is a distinct and very different part of the

“orange.” Furthermore, to satisfy the MVC paradigm, page requests must go through the

Controller before they are routed to the client. So, in effect, if one were to be the “Slicer”

they might be the only Slicer in town with the only “orange” (data) in town. The

preceding is somewhat crude technically but conveys the idea well for beginners. In the

following paragraph the major MVC models written for the Java platform will be

discussed with the pros and cons of each architecture in mind.

D. COMPARISON OF LEADING MVC FRAMEWORKS
For the DoD project manager who is in charge of a web application or a

simulation, the choice of MVC architecture can either propel a project towards success or

doom it to failure. The preceding statement is a bit of a dramatization but if the wrong

MVC architecture is chosen for a specific set of requirements, management might

ultimately need to pull the plug on development down the road and call for a complete

rewrite. Today’s mainstream MVC architectures on the Java Platform are: Struts, Spring,

(JSF) Java Server Faces, and JBoss Seam. Struts has available since January of 2001,

while Spring and JSF are younger by three years. JBoss Seam has been available since

2005. Spring is currently the MVC of choice for most project managers who are starting

from scratch due to its breadth and support of Aspect Oriented Programming (AOP) and

Inversion of Control (IoC) architecture, which allows for a greater degree of decoupling

of dependencies between business logic and the application server. The preceding is an

industry trend, which is most likely not going to go away, JBoss Seam utilizes AOP and

IoC as well. However, Struts still does own a majority of the market share at

approximately 60%. Furthermore, as a manager it will undoubtedly be easier to find

personnel familiar with Struts.

23

MVC Web Framework Comparison18

• Struts used since Jan 2001
• Spring used since Jan 2004
• JSF used since Jul 2004
• JBoss Seam used since 2005

Struts Pros:

• Lots of Struts projects out there
• Good tag libraries

Struts Cons:

• Action Forms are counter-intuitive for most
• Struts test case only does integration, project “rumored” dead
• Struts quickly becoming obsolete

Spring Pros:

• Lifecycle for overriding binding, validation, integrates with many
view options easier such as Java Server Pages (JSP) and Java Standard
Tag Libraries (JSTL)

• Tiles, Excel, PDF, Inversion of Control makes applications easier to unit-
test

• Supports using Business Logic (POJOs) Plain Old Java Objects while still
support (EJB) Enterprise Java Beans 3.0.

Spring Cons:

• Configuration intensive (Lots of XML)
• Requires lots of code in the Presentation layer (JSP)
• Too flexible (lots of XML configuration files) no concrete controller

JSF Pros:

• Sun Java EE 5 standard, plenty of demand and jobs
• Fast and easy to develop with
• Rich navigation framework

JSF Cons:

• Tag soup for JSPs
• Does not play well with REST or security
• No single source for implementation
• More of a Presentation layer framework and less of a strong MVC

framework
•

18 Matt Raible. (2006). Comparing Web Frameworks.

24

JBoss Seam Pros:
• Supported by Gavin King, who created the well known and industry

respected Hibernate, (O/R) Object Relational Mapping tool, which binds
Java objects to SQL statements on the backend.

• Like Spring, supports using POJOs for business objects while also being
fully compatible with EJB 3.0.

• Supports eliminating modular cross cutting concerns with an architecture
based on Aspect Oriented Programming (AOP).

• Supports the ability to code in AOP using AspectJ

JBoss Seam Cons:

• Not directly supported by Sun

• Some say the JBoss business model yields open source products, which
are very feature-rich and robust, but with little online support, thereby
creating the need for support contracts.

Ajax3D and Rez are two tools that will allow DoD modeling and simulation to

provide similar terrain capabilities to customers as the current industry leaders Google

Earth and Nasa World Wind. A vast amount of research has already been done with

regards to terrain modeling and the industry best practice is currently to overlay

orthographic imagery on top of terrain data. The orthographic imagery is then “tiled” and

processed by software into a proprietary (DirectX, OpenGL) or open source (X3D,

VRML) format. The terrain software organizes the “tiled” orthographic imagery and

outputs directories into the OS file system in a hierarchical fashion to minimize the

server-side administrator’s maintenance worries but still take performance into account as

well.

E. X3D-EARTH, THE END-STATE OF X3D AND AJAX.

Nothing scales like the World Wide Web. The end goal of all of the talk of Ajax

and dynamic server-side state changes pushed to the client is a web based geospatial

terrain system. X3D-Earth19 is currently addressing these issues at NPS with the ultimate

goal of providing the DoD with an open source terrain system. Currently at NPS, faculty

19 X3D-Earth. Web3D Consortium X3D-Earth Home Page.

25

and students have been successful in generating 3D terrain models into X3D by utilizing

the Rez tool. The next logical step might be to add the ability to layer various pieces of

geometry; such as Google does with 3D buildings using 3D Warehouse20, though

licensing issues apply in production, and various pieces of information on top of the auto-

generated Rez terrain models. Below is AT&T Park, which is in a common format KMZ,

or more commonly known as Google Earth version 4 format. Google Earth 4 currently

supports KML and Collada and therefore a KMZ file is nothing more than a KML file

and a Collada file in .zip format. The Collada zip file includes all geometry and textures

organized in a sub directory structure so that the model looks strikingly impressive “out

of the box.” The power of using a de-facto standard online repository for models of

important city landmarks worldwide cannot be overstated. It allows the terrain system

developer to quickly provide realistic looking models to their customers without having

to reinvent the wheel.

Figure 13. AT&T Park 3D geometry available for download from Google’s 3D

Warehouse from [20].

20 Google 3D Warehouse. Google.

26

Figure 14. Logo for Rez open source image slicer from the Rez Homepage. (2007).
Retrieved August 11, 2007 from http://planet-earth.org/Rez/RezIndex.html. Rez is an
orthographic image slicer that allows for orthographic imagery to be overlaid on top of

X3D-Earth Terrain at various levels of detail to yield convincing city models.

Rez is basically a tool that creates a mesh of orthographic imagery of any type

(but for Geospatial purposes, from satellites) at various levels of detail; especially useful

is Rez’s ability to mesh high-resolution urban orthography on top of elevation data such

as Digital Elevation Map (DEM) or Virtual Reality Markup Language (VRML) Elevation

Grid. Rez has two major modules: the imageSlicer and the Rez jar file itself. The image

Slicer slices the orthographic imagery while the Rez jar takes care of the internals of

meshing the sliced imagery to the elevation data. Rez creates Level of Detail (LOD)

trees (either binary tree or quad tree) to accomplish the preceding.

Figure 15. A Rez generated version of downtown San Jose in X3D at street level,

showing details of HP Pavilion in Octaga Player.

27

Figure 16. A Rez generated version of downtown San Jose at altitude in Octaga Player.

F. CONCLUSIONS

Capt. Neushul’s work was truly innovative and a harbinger of things to come. In

today’s society with the advent of mobile devices, the World Wide Web is the only time-

tested and reliable way to provide an extremely scalable and maintainable application.

However, the preceding is both a blessing and a curse in that whenever an application

migrates from the client-server architecture of the past towards the three-tier architecture

of today’s web based applications a myriad of considerations must be weighed.

The most important of them is the choice of the MVC architecture. After that, the

choice of presentation layer technology might follow with application server being the

28

last real concern to be addressed before a draft architecture proposal is brought to bear.

Web 2.0 and Ajax have both improved and complicated the problem space by now

allowing dynamic modification of graphs, both 2D (DOM) and 3D (scene graph). The

challenge now lies with the program manager and contractor to agree on the appropriate

set of frameworks for a specific application. As new open source enterprise-level

frameworks are popping up every week, it is both an exciting and dangerous time to be

involved in any enterprise-level project since making the right design decisions at the

front-end of the development cycle is absolutely critical on the Java platform.

29

III. ASYNCHRONOUS JAVASCRIPT AND XML

A. INTRODUCTION

The term Ajax was first used by Jesse James Garret in 200521 and has now

become so widely used that it was the topic of the majority of presentations at Java One

Conference 2007 (Sun’s premier annual conference on Java Technology). This chapter

describes Ajax on the architectural level and also provides a brief comparison of the

different leading frameworks currently in industry. Additionally, a case study involving

Legacy Bupers Access written enitrely in JavaScript is described to further underline the

huge benefits that a Component-Driven Ajax design can provide the web developer.

Finally, a real world application of Ajax for an NPS requirement will be shown. Ajax is

a way to provide a rich-client experience, such as Google Maps, to the client. The

preceding is accomplished by utilizing a new broker request called XMLHttpRequest and

by keeping a server side copy of the client’s DOM.

B. OVERVIEW
In terms of Ajax, two approaches exist to creating the effect of dynamic server-

side calls. The first is essentially a customized approach where the developer literally

goes in and codes how the XMLHttpRequest object works by writing all the necessary

code in JavaScript and either embedding it in the page or linking a reference to the script

with a tag. The second and by far most popular approach to leveraging Ajax is to use a

proxy framework, which lets the developer stay in Java while a framework that is sent to

the client translates the Java into JavaScript and typically also takes care of issues relating

to asynchronous communications as well. Such frameworks today include ZK, Direct

Web Remoting (DWR), Echo2, Google Web Toolkit (GWT), Apache Extensible Ajax

Platform (XAP), and Dojo to name a few. Every framework has its strengths and

weaknesses, which are discussed later on in this chapter.

21 Ajax (programming). (2007, June 1). In Wikipedia, The Free Encyclopedia.

30

C. ENCOMPASSING TECHNOLOGIES

Technologies used in Ajax domain22 are listed in Figure 17.

• XHTML (HTML) and Cascading Style Sheets (CSS) for standards based
presentation layer

• Document Object Model (DOM) for achieving dynamic display and
interaction

• XML and XSLT for data interchange and manipulation

• XMLHttpRequest for asynchronous data retrieval with the web server (in
some Ajax frameworks an IFRAME is used instead of the
XMLHttpRequest object)

• JavaScript to manipulate and bind everything together

Figure 17. A listing of the technologies currently in the Ajax domain from [22].

D. HIGH LEVEL AJAX ARCHITECTURE
In the Figure 18, the uploading of the Ajax Engine to the client side is conveyed.

Ajax Engines are typically fairly small (by broadband standards anyway, the GWT

engine is approximately 100 kilobytes). The important thing to remember is that all Ajax

frameworks require a footprint on the client-side, usually requiring a longer initial load

time. Depending on the configuration and needs of the application the footprint can

range from roughly 25 kilobytes to well over 500 kilobytes and beyond. However,

typically Ajax footprints are approximately 100-200 kilobytes. The web developer must

also keep in mind that many web servers support gzip compression, which help minimize

the preceding footprint slightly. Intuition might suggest that uploading a translation

engine for Ajax to the client can negatively impact performance. However, the preceding

is actually a case of choosing the lesser of two evils. Compared with having to reload the

page every single time the state changes on the client side, uploading the Ajax Engine is

actually a significant architectural improvement that improves responsiveness. Figure 18

is a high-level view of proxy-based Ajax architecture.

22 Les Cardwell. (2005, December 30). AJAX-Bridging the Thin-Client Performance Gap.

31

Figure 18. A high-level view of proxy-based Ajax Architecture from Ajax Architecture.
(2007). OpenAjax.org. Retrieved August 9, 2007 from

http://openajax.org/member/wiki/images/c/c5/ClientSideAjax.gif. Note that the server-
side Ajax engine is central to the architecture in that it serves as the intermediary between

user-interface logic, typically written in Java and JavaScript on the client-side.

E. WEB APPLICATION MODEL VS. AJAXIAN APPLICATION MODEL
The classic web paradigm of a client soliciting data from the sever is known as

“pull” and is synchronous in that any client-side process are “blocked” or must wait for a

server-side response before continuing lines of execution. The new Ajax paradigm23 is

asynchronous which means that any client-side process does not need to wait for any type

of server-side response before continuing to execute through code or tags within the

presentation layer. There are several types of Ajax application models, classic Ajax

Polling, Smart Polling, Asynchronous Polling, Long Polling, Streaming Ajax, True

Push/Streaming, Forever Frame, and Reverse Ajax. Section F covers these types of Ajax

in more detail.

23 Ibid 22.

32

Figure 19. A classic web application model vs. an Ajax web application model from [23].

Note that in the new Ajax web application model XML is being passed from the server-
side to the client-side via the Ajax engine.

Figure 20. A performance comparison between Ajax and traditional web sites for a

multimedia-heavy site from [23].

33

F. TWEAKING AJAX AND EXTENDING IT WITH COMET
Comet and Reverse-Ajax both attempt to tackle the problem of updating the

client-side with server-side data in an efficient and scalable way. A good example of a

real-world application where the server-side might constantly be updating the client is the

classic stock ticker example. At first and, widely still in use, Ajax applications utilized

polling over a discrete and un-dynamic timeframe to detect any sever-side state changes.

From that point, Ajax Asynchronous Polling was created in order to eliminate wasted

server-response cycles and mandated that the server-side only respond when the server-

state actually changed. Comet and Reverse-Ajax attempt to go even farther by creating

longer more persistent connections between server and client in a stateful non-traditional

HTTP approach.

Comet and Reverse-Ajax are two terms that are mentioned frequently within the

world of Web 2.0, and more specifically by Ajax web developers. Comet is a really the

inverse of Ajax in that it is a design pattern that calls for sending asynchronous calls to

the client, not the server as with Ajax. Depending on the client’s available bandwidth

and specific requirements a specific brand of Ajax may be in order. By definition with

Ajax asynchronous server-calls are a given; however, how often the server is challenged

for updated state is up to the developer or project manager. Above and beyond the

classic Ajax Polling paradigm, are methods such as smart polling, streaming (pushing),

forever-frames, and Reverse-Ajax.24 Figure 21 shows the classic page refresh web

model, emphasizing that all of the waiting is done on the client-side.

24 Alexander Alinone. (2006, December). Changing the Web Paradigm.

34

Figure 21. Above is a diagram of the classic web page refresh model from [24]. Note
that, the blue bars denote waiting time and all the waiting time is being done on the client
and browser side. The client in this paradigm cannot perform any action during the form

submission process.

1. Ajax Polling
Polling is a means of the server updating the information on the client at regular

intervals or polls. Previously, using meta-refresh tags in a traditional Web 1.0 paradigm

did this. However, in Ajax business is done on the client with JavaScript so in real-

practice the intervals can be set with the JavaScript setInterval() method. From that

point, real-world information such as an RSS feed can be updated on a web page through

such means. Weaknesses of a traditional Ajax Polling architecture are that scalability

starts to become an issue if the polling time is set too low. In this scenario, the problem

of updating the DOM with new information gets worse and worse as the rate at which

information is changing is greater than the rate at which changes are being observed. The

result is a architecture with clients that have outdated DOM trees and is slow at any

substantial scale. Figure 22, is a diagram illustrating the interactions between client,

server, and browser under the Ajax Polling scheme.

35

Figure 22. An Ajax Polling diagram from [24]. This diagram is showing the server
passing data to the client over exactly the same discrete time-intervals. Note that in this
model, the client can perform actions while waiting for the server to send its next update

of information.

2. Ajax Asynchronous (Smart) Polling
Smart Polling is similar to Ajax polling only that the polling cycle has a variable

period. Instead of polling the server at pre-determined times the client sends a request to

the server. It is then up to the server to keep the request pending until new data is

available, before sending the response back to the client. Upon receiving the response,

the client sends an entirely new request. The preceding creates a paradigm where the

polling timing is governed by the server and network latency. Figure 23 shows Smart

Polling at the conceptual level.

36

Figure 23. A diagram showing Ajax Asynchronous Polling (Smart Polling) from [24].

Note that in this new model, the polling wait times are vary. In the asynchronous-mode
polling reacts much better to network lag and server-load, making it a better solution if

massive scalability is a concern.

3. Streaming Comet aka (Server Push, Comet Forever-Frames)
Streaming (Push) technology was first introduced in 1996, as a way of reversing

the classic web model of pulling from the server. In a certain sense, email can be

considered on of the Web’s oldest push technologies. In the streaming model, the client

receives updates from the server-side at the server’s discretion in the form of a

continuous feed. In the Ajax model shown in Figure 24, the client becomes a passive

entity receiving updated information as soon as it is available on the server, without

having to periodically ask for it. Streaming Ajax depends on a long-lived HTTP

connection to the server in order to receive updates from the server based on event-

registration techniques such as standard event handling. As soon as a state change occurs

the server pushes the new data to the client and flushes the output stream but does not

close it. In this pattern, the browser then resolves the differences between the client-side

DOM and the server-side DOM.

37

Figure 24. A diagram of Streaming Ajax or Comet technology from [24]. In the

diagram, the client and server establish a long running connection to monitor state and
update each other upon state changes. Note that this technology is still largely

experimental and might pose some scalability problems. Also note the absence of any
wait time.

4. Comet Long Polling
Long polling is very similar to Ajax streaming except that the connection actually

closes. Long polling is basically a bandwidth cheaper version of Ajax Streaming in that

it keeps a long connection but not a persistent connection. In Long Polling, the Ajax

application will only send out a single request and wait for partial responses, i.e., chunks

of data to come back from the server. Long polling is recommended over normal

unresponsive polling but only if the Ajax application in question does not require

frequent updates. If frequent updates are of a concern, then Ajax Streaming can be

utilized.

G. COMPARISON OF LEADING AJAX FRAMEWORKS
While many of the leading Ajax frameworks do agree that Ajax can abstract away

JavaScript from the server-side developer they all fundamentally have different views

38

regarding how much more a decent Ajax framework can do. The domain of Ajax

frameworks is basically split into three camps. The first camp thinks that Ajax

frameworks need to “do one thing and do it well.” Google Web Toolkit25 falls squarely

into this camp and is designed from the ground-up to push more computation to the

client-side. The second camp thinks that an Ajax framework needs to be server-centric

and possess a large variety of rich widgets each with inherent properties like self-

validating fields and native data binding properties. ZK26, Echo227, and ICEfaces28 fall

into the second camp. The third and final camp believes that an Ajax framework can do

as much as possible including libraries for remoting, validation, offline-browsing, and

security. The Dojo29 and Apache XAP30 Projects fall under the third category. Figure

25, shows the first of many Ajax frameworks whose pros and cons are evaluated in this

chapter.

Figure 25. A screenshot from [26]. ZK is a good choice for a proxy-based Ajax
framework in that it has a lot of support. ZK is currently the most downloaded Ajax

framework on SourceForge.net.

25 Google Web Toolkit Project Home. Google.
26 ZK Project Home. ZK Ajax Framework.
27 Echo2 Project Home. Echo2 Ajax Framework.
28 ICEfaces Project Home. IceSoft Technologies.
29 Dojo Project Home. Dojo Ajax Framework.
30 Apache XAP Project Home. Apache Software Foundation.

39

ZK Pros:
• Lots of widgets
• Easy to understand tag libraries and xml namespaces
• JavaScript generated by a ZK engine, developers stay in Java
• Intuitive framework, working example in less than one hour
• Supports Java Server Faces technology
• Contains libraries for application on Mobile Devices
• #1 Ajax Project on SourceForge.net

ZK Cons:
• Need to learn Mozilla’s Extensible User Interface Markup Language

(XUL)
• Dual license structure just like MySQL

Figure 26. The logo for the Dojo toolkit framework from [29]. The Dojo toolkit provides

the developer with rich libraries for everything from security to server-side push.

Dojo Pros:

• Wishes to be the “Java” i.e., one stop shopping for Ajax technologies
offering libraries for all aspects of Ajax from security to offline browsing.

• Rich libraries of Ajax widgets and features, i.e., server-side push
• Offline browsing
• Sun support

Dojo Cons:

• Wishes to be the “Java” i.e., one stop shopping for Ajax technologies
which means that it has a larger footprint than many other frameworks
since the Ajax bridge needs to do so much more. The Dojo framework
will also never benefit from the simplicity in scope that typically makes
for great software projects, which adhere to the adage of “do one thing and
do it well.” Dojo serves as a contrast to a minimalist framework such as
GWT.

40

Figure 27. The logo for Google Web Toolkit from [25]. Google Web Toolkit takes a

client-centric approach to providing Ajax functionality to the user.

Figure 28. A representation of the Google Web Toolkit (GWT) architecture from [30].

Note that in the GWT architecture, more emphasis is put on utilizing the client-side.
Compared to other proxy frameworks such as ZK or ICEfaces, GWT has relatively few

widgets, but the ones it does have are robust.31

GWT Pros:

• Back to basics approach to widgets, do one thing and do it very well

• JavaScript generated from GWT Engine developers stay in Java

• Google support

GWT Cons:

• Low number of widgets

31 Dion Hinchcliffe. Google’s Innovative Yet Limited Ajax Environment.

41

• Non-intuitive layout of core JavaScript libraries.

• No working example, after two days still no working example

Figure 29. Logo for the Apache XAP Project from [30]. Note that Apache XAP suffers

from a small user base and inadequate examples and documentation.

XAP Pros:

• Project related approach to Ajax good if familiar with Ajax
• Uses Dojo as its default toolkit
• Nexaweb support

XAP Cons:

• Many in industry claim it attempts to reinvent the wheel by creating a new
UI declarative language called XAL which is strikingly similar to XUL
the one already accepted by industry and supported by the Mozilla
Foundation

• Few demos
• Name Recognition still fairly low
• Documentation considered weak by many developers thereby creating

very shallow learning curve

Figure 30. Logo for Echo2 framework from [27]. Echo2 has an Ajax engine that allows

for the developer to not only stay in Java but to program to the Swing API on the server-
side and have the results be translated on the client-side to JavaScript. Echo2 is a good

choice if developers within the enterprise are very comfortable with Swing.

Echo2 Pros:

• Swing based framework great for developers that want their web pages to
look like Swing apps and still be using Ajax under the hood. Great for
clients that want web applications so robust that the users do not realize
they are on the Internet

• JavaScript generated from Echo2 Engine allows developers to stay in Java
without worrying about the implementation details of JavaScript

42

Echo2 Cons:
• No broad based industry support. Hardly mentioned (heard it once) at

JavaOne 2007

Figure 31. Logo for Java ICEfaces from [28]. Java ICEfaces is another Ajax proxy
framework that is meant to integrate with (JSF) Java Server Faces technology. Since,

JSF is a Sun standard JSF is growing in popularity and most Ajax frameworks are being
built with JSF compatibility in mind from the ground up.

ICEfaces Pros:

• Architecture intended to be laid on top of Java Server Faces (JSF) which
has Sun support (Supports JSF 2.0)

• Level-4 framework, denoting support for service-oriented architectures

• JSF is currently integrated into NetBeans 6, so if developers are already
using the IDE it will integrate nicely

• Wide industry acceptance with such high profile customers as SAP,
Boeing, HP, IBM and Avaya.

• Open Ajax Hub (Industry supported Ajax Consortium) Compliant32

• Integrates nicely with the new JBoss Seam Java Enterprise Edition (EE)
version 5 framework

• Lots of demos33.

• Supports drag-and-drop components (key for smartphones with touch
controls like the iPhone)34.

ICEfaces Cons:
• Associated learning curve with using the JSF Framework

32 Open Ajax Alliance. (2007). Open Ajax Hub FAQ.
33 ICEfaces Auction Monitor Live Demo. (2007). IceSoft Technologies.
34 ICEfaces Component Showcase. (2007). IceSoft Technologies.

43

Figure 32. A great ICEfaces demo of an online auction from [33]. The demo shows

dynamically changing bid times and time remaining (shown at JavaOne 2007).

Figure 33. A nice shopping cart Ajax drag and drop control demo in Java ICEfaces from

[34]. The Ajax drag and drop functionality might prove useful in a future X3D-Earth
implementation allowing for features such as place mark additions.

44

H. CASE STUDY: LEGACY BUPERS ACCESS FROM NAVAL
PERSONNEL COMMAND
At Naval Personnel Command back in 2004, this author was tasked with

responsibility of Bupers Access, which is now Bupers Online. The site was initially put

together by a few technically savvy Navy Chiefs and was turned over to me by an ex-

DT1 who was an IT1 at the time. Also at the time, Legacy Bupers Access had tons of

JavaScript literally embedded in the presentation layer, in direct violation of good MVC

practice. Particularly painful was the fact that many of the date box controls were done

in pure JavaScript and were pages long. During my tenure as the system administrator,

orders from supervisors to change content were frequently given but not executed

because of the complexity of the JavaScript being on the order of pages of code for one

component such as a date box. However, with Ajax components, DoD can abstract the

complexity out of JavaScript and still leave the developer in their comfort zone in Java.

Furthermore, by using Ajax methodologies in new web development projects, the DoD

can leverage the power behind the Web 2.0 concept and have the potential to do some

rather astounding things like offline browsing which can be absolutely critical in some

operational contexts.

I. EXAMPLE AJAX APPLICATION: MOBILE DEVICE CHECKOUT
The following is an exemplar on how an actual requirement at NPS, specifically

within the Computer Science department was tentatively addressed using Ajax

technology to the point that a prototype web application was developed and is currently

awaiting testing. Currently, the Mobile Devices Lab at the Naval Postgraduate School is

in need of a system that tracks checked out PDAs, Books, and Software. Through the

usage of Ajax technology, such a system was created and now only needs to be populated

with accurate inventory information to be tested before being ultimately put into

production. ZK was chosen as the Ajax framework due to the relatively friendly learning

curve and the abundant amount of community support, user-examples and widgets. The

Mobile Lab wanted a system that the average student can maintain and minimal

complexity within the presentation layer. Figure 34 is a screenshot of the login page:

45

Figure 34. The login screen for the Mobile Web Device Checkout application. The Ajax

application was implemented in ZK with a PostgreSQL database as the back-end and
Apache Tomcat as the application server.

Figure 35. The Main Menu screen for the Mobile Web Application. Note that the links

for Access Reports and View Cart both have Ajax ZK controls powering them. For
Access Reports a ZK paginated data grid is utilized. For the View Cart functionality, an

Ajax date box and data grid are utilized.

46

Figure 36. A ZK tab panel containing a ZK data grid. Note that this Ajax control

contains paginated and sortable columns inherently. The benefits of using Ajax
frameworks are that components frequently support the preceding features and more

natively.

Figure 37. A ZK date box control within the View Cart module of the application. Note

that this control typically takes approximately hundreds of lines of JavaScript to
implement without Ajax. With Ajax this control takes two lines of code and also has
built in validation and constraints such as not allowing the input of dates in the past.

47

Figure 38. An automatic date box validation example with ZK date box control. Note

that the “in the box” validation that occurs is native to the control and requires no extra
programming. This diagram shows the error message that automatically pops up if the

user enters erroneous data into the date field at checkout time.

The approach of the project was to utilize as many built-in Ajax widgets as

possible and to stand the application up for initial beta testing as soon as possible. An

elementary MVC framework was utilized in this project for the sake of not overwhelming

any potentially interested students as was requested by the sponsor. The sponsor also

required the exclusive usage of open source technologies. The web application was

developed in the NetBeans 5.5 IDE running on Apache Tomcat 5.5. The web application

utilizes PostgreSQL 8.1 for data storage. All of the preceding applications are open

source under the LGPL (Lesser-GNU Public License).

Noteworthy aspects of the application are the fact many widgets, date box and

sortable table, in this project specifically are packaged as components. Furthermore,

nearly all of the controls have validation schemes built in, note the “No Past, and No

Empty Constraints” for the date box in Figure 39 below. The preceding allows for easy

development on the server-side. With the date box in particular the old way of doing

business required multiple lines of code. Worst of all was that due to the JavaScript

48

technology, before Ajax came along, all the JavaScript code was oftentimes heavily

imbedded in the presentation layer. The following lines of code, which are really two

lines of code but spread out for readability sake, are exactly the lines of code required to

utilize date box in the presentation layer.

<jsp:directive.page import="org.zkoss.zk.ui.util.*"/>
<x:datebox name='<%=returnDate + index %>'
id = '<%=returnDate + index %>'
constraint="no empty, no past"/>

Figure 39. The Ajax code to display a date box with a “no past” and “no empty”
constraints using the ZK framework. Note that this code replaced a 565-line legacy date

box implementation that is presented in Appendix C.

Contrast the above code snippet with the old way of doing business (see

Appendix C) for full legacy date box code. The code is a total of 565 lines35. From both

a developer and project manager perspective, whittling down something that used to take

565 lines into something that now takes two lines is a huge win. From the business

object developer perspective, it is a huge win with regards to time. From the project

manager’s perspective it is a huge win with regards to maintainability. Coupled with the

fact that all 565 lines might be in the presentation layer and can possibly overwhelm the

layout minded web designer and adversely impact their productivity as well; the

dichotomy is even clearer and more powerful. Current Ajax proxy frameworks give the

project manager tightly integrated control of JavaScript files.

The various popular Ajax frameworks promote efficient management of the

JavaScript, which was really what was missing in 1997 when Dynamic HTML (DHTML)

created a spark and was quickly put out by a lack of interested developers. DHTML also

lacked any efficient way to apply its impressive graphics abilities without page refresh,

which quickly became annoying to most developers as well. Ajax picks up where

DHTML left off with the new XMLHttpRequest object and its inherent ability to contact

the server-side whenever it needs to. An Ajax component approach versus pure

JavaScript is clearly the way to go in Web 2.0. Furthermore, a proxy based framework

approach versus custom-made calls to XMLHttpRequest is also the direction of the

35 Serge Ryabuck. (2002, January 9). Legacy JavaScript DateBox Code.

49

future. Just as with MVC, modern day Ajax proxy frameworks keep the developer from

creating an obfuscated code base and minimize scripting in the presentation layer.

J. CONCLUSIONS
Ajax has definitely become a buzzword in the realm of enterprise web

development. It is important to remember that the amount of server-centric or client-

centric activity inherent in a web application must dictate the choice of Ajax proxy

framework, not the other way around. Also, the important thing to realize is that while

Ajax is an outstanding new technology, it is not a panacea for curing poor web design,

performance, maintainability, or scalability. It is critical that Ajax be used in moderation

and only be applied to actual requirements and not for the novelty of just implementing a

Web 2.0 application. In fact, Ajax is a double-edged sword in that the developer needs to

be careful with regards to how much JavaScript is going over the wire as not to produce

too much latency for the end-user. The preceding is discussed further in the Ajax

Performance chapter. The important thing to take away from Ajax is to remember the

term is conceptual. The various frameworks explored in this chapter attempt to give the

reader quick insight as to how different requirements can be mapped to the domain of

Ajax. Built on a strong foundation of an appropriate Ajax framework selection, and a

suitable MVC architecture, rich-client experiences can be had on the GIG allowing

people to work more effectively and create the applications they need now and not at a

later date when NMCI feels like completing the VV&A (Verification Validation and

Accreditation) process.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

IV. AJAX PERFORMANCE

A. INTRODUCTION
One of the more annoying features of new technology demonstrations is the fact

that it is almost never the case that the vendor, or in the case of many open source

projects, the consortium or working group, discusses the pros and cons of utilizing the

new technology in question. While Ajax has myriad benefits, if used incorrectly, Ajax

can be a performance bottleneck due to a large Ajax Engine or an improper technology to

requirements mapping i.e., using JavaScript Object Notation (JSON) when the browser

that clients use is more efficient with Extensible Style Sheet Transformations (XSLT).

Furthermore, with the rise of mobile smartphones the application of Web 2.0 constructs is

likely to become increasingly important as the growth of Web-aware mobile devices

begins to saturate the marketplace. This chapter will attempt to address the currently

identified Ajax performance issues within industry and offer possible best practices for

design of Ajax enabled web applications.

B. OVERVIEW
 At the high level, Ajax performance optimization seeks to accomplish two things.

The first is simply minimizing direct manipulation of the DOM. The preceding is done

with Ajax engines in general, or innerHTML calls if the application is implementing Ajax

calls manually. Minimizing dot notation on subsequent client-side calls to the DOM is

also important as there is a level of JavaScript optimization in play across different

platforms but their degree varies. Secondly, the developer must seek to minimize the

amount of JavaScript coming across the wire to the client from the server. The developer

must always keep in mind that JavaScript is about 5000 times slower than a typed

language such as C36. Additionally, common questions when approaching performance

optimization include but are not limited the items in Figure 40.

36 Geoffery Fox. (1999). JavaScript Performance Issues.

52

1. How much data the enterprise must handle?
2. What type of data?
3. How many server hits?
4. What are the common workflows?
5. What browsers are clients using?
6. What is the existing infrastructure?
Figure 40. A list of baseline questions to consider when addressing Ajax performance.

C. JAVASCRIPT COMPRESSION

With regards to Ajax, it is important to remember that JavaScript files are actually

being dynamically sent over the wire to the client via the Ajax engine. Furthermore, the

Ajax engine itself requires a small footprint (typically on the order of 100-200k), again

over the wire. From the preceding, compression and consolidation become necessary

methods of improving performance if necessary for the web application in practice.

Since the HTTP 1.1 specification came out, Apache and Microsoft IIS (Internet

Information Server) both support zipping the JavaScript via gzip. Another methodology

to improve performance might be to write a Combiner Servlet to dynamically combine all

the .js files at run time. The preceding is applicable even if the Ajax framework you are

currently using utilizes an Ajax engine on the client-side. However, if it does not the

method is extremely critical. Furthermore, the Combiner Servlet can also incorporate any

imagery or Cascading Style Sheets (CSS)37 that are involved in the presentation layer at

runtime further saving bandwidth and ameliorating response times.

37 Craig Baker. (2007, May 16). Ajax Performance Tuning.

53

Figure 41. A summary table showcasing from [38]. In the figure, several types of

JavaScript compression and their expected result on a 9.3-kilobyte file.

D. MINIMIZING WHITESPACE AND OTHER TRICKERY
 Within the actual code itself, there are a few things that the developer can do to

minimize the transmission time of the JavaScript across the wire38. In the JavaScript, the

developer can eliminate white space and new line characters. However, the drawback of

the preceding methodology is that it obviously drastically reduces readability and

maintainability of the code. The developer can also configure the cache settings in the

HTTP Response headers appropriately. Native DOM parsing in the browser and by

Image Merging39 or splitting an image into two for faster transmission across the network

can significantly increase performance. Figure 42 shows the details of Image Merging.

38 Dave Johnson. (2007). Pragmatic Parallels: From Development on the Java Platform to

Development With the JavaScript Programming Language.
39 Ibid.

54

Figure 42. Image Merging Process from [38]. In the figure, the breaking up of imagery
into smaller sections for faster traversal over the wire is shown.

Figure 43. An example of Image Merging at the presentation layer from [38].

55

E. AVOIDING EXPENSIVE JAVASCRIPT METHOD INVOCATIONS
Another critical requirement for successful Ajax performance optimization might

be knowing the details of the implementation of the code base along with the details of

the customer base. Code implementation details come into play when trying to weed out

CPU-intensive JavaScript calls. Figure 44 shows a table of some of the more egregious

JavaScript offenders40 and minimizing this approach can only help the cause.

Figure 44. A chart showing the most CPU-intensive JavaScript methods after [38].

F. KNOW THYSELF KNOW THY BROWSER
 Knowing the browser platform that the customer base primarily uses is of critical

importance. String comparisons in IE are generally about four times slower than those in

Firefox.41 Reverse-Ajax or Comet technology is also an option to allow for graceful

degradation of the web application in conditions of low to zero bandwidth if the customer

base is forward deployed or in remote locations. Knowing that XSLT, in general,

performs better in an Internet Explorer environment is also critical to success in

optimizing performance. JavaScript and associated technologies such as JavaScript

40 Dave Johnson. (2007). Pragmatic Parallels: From Development on the Java Platform to

Development With the JavaScript Programming Language.
41 Ibid.

56

Object Notation (JSON) typically run faster in Mozilla Firefox. If using XSLT, it is also

beneficial to know that for faster XSLT typically avoid using <apply-templates> and

gravitate toward <for-each> tags. Interestingly enough, the XSLT processor actually

takes longer to find the templates than to iterate through the for-loops. The preceding

process will also yield a side benefit of reducing file size. Furthermore, to improve

performance minimize “*” or “//” queries in XPath. Finally, it is good practice to

maximize the usage of the <xsl:key> tag lookups with name value pairs to minimize seek

times. Figure 45 shows the significant difference between processing times of XSLT

between IE and Firefox.

Figure 45. A diagram showing Internet Explorer’s better XSLT performance when paired

against Firefox (lower times are better). After Dave Johnson’s slides, [38].

57

G. CONCLUSIONS
The usage of Ajax Web Applications (Web 2.0), on mobile devices is clearly a

disruptive technology. With Apple’s new release of the iPhone and the entire mobile

industry copying that design, the concept of the “Web in Pocket,” will only gain

momentum in the near future. Owing to the preceding, Web 2.0 applications need to be

designed with performance and scalability in mind. Currently, Google Maps works

beautifully on the iPhone even on AT&T’s EDGE network. The performance of Google

Map’s as an Ajax application on modern day smart phones is a testament to the power of

Ajax and the power of good Web 2.0 design principles. In the future, if a server-side

version of X3D-Earth were to become a reality, performance over mobile devices can be

a critical consideration to be able to empower the service member while they are forward

deployed. The ability to visualize the same battle space on a smart phone that U.S

Central Command (CENTCOM), or North American Aerospace Defense Command

(NORAD) can visualize on their gigantic LCD Monitors is the end game of this

endeavor.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

V. AJAX SECURITY

A. INTRODUCTION
Through the downloading and execution of code from the server-side the client

obviously accepts a certain level of risk. The goal of Ajax security is to minimize that

risk in a cost-effective manner that makes sense for the enterprise. As many Navy

employees are now realizing, with the NMCI network, sometimes too much security is a

bad thing. However, the preceding does not advocate lax security either. Aristotle had a

good handle on things when he declared that the key to life was to live the “Golden

Mean.” By Golden Mean, Aristotle meant that typically in life people run into problems

when their life is not in balance, i.e., too much work and no family-time or vice versa.

The usage of optimal computer security techniques works in the same way. In this

chapter, several methods of minimizing the new security concerns associated with using

JavaScript in the enterprise to power Ajax. Concepts in this chapter include the Sandbox

Concept, Server Of Origin, Cross Site Scripting (XSS), Cross Site Request Forgeries

(XSRF), and Mashup concerns. On top of the preceding, a few real world examples of

security breaches will be examined for the sake of future prevention.

B. OVERVIEW
The fear of Identity Theft has discouraged lots of users from using many aspects

of the web. It is in the best interests of the project lead or program manager to ensure that

the end-user has an acceptable level of information assurance on their own respective

web architectures. As stated in the introduction above, the key is to not pigeonhole the

end-user into a situation where there is so much security that they cannot perform routine

tasks with acceptable speed and convenience. A balance must be struck between security

and sanity. Ajax controls can help and hurt the enterprise in this regard. Oftentimes,

sites will have draconian password constraints on new registrations or accounts that are

more constrained than banks and online trading sites. The preceding is absolutely

ridiculous at times for sites where the worst an end-user can do is post a message on a

blog or gain access to read-only data. A far better solution might be to utilize an Ajax

password widget, which can give the user instant feedback on the strength of their

60

password while at the same time implementing reasonable password lengths and rules.

Such widgets already exist and can be seen on Google42 when you sign up for a new

account. The functionality is shown in Figure 46 for the reader.

Figure 46. A new Google account sign-on registration form from [42]. The form
showcases an Ajax password strength widget. Also note how a password of minimal

length can still be considered strong depending on the characters used.

Unfortunately, Ajax brings with it security issues with scripting. Any time code

is streaming either into the client or into the sever-side issues will come up. The

preceding is as inevitable as death and taxes. However, while the Ajax approach is not

inherently insecure, it is surely not inherently secure. Steps must be taken by the project

lead to ensure that an Ajax-enabled site is not compromised. The good news is that the

preceding truth applies to all web applications in general. Buffer overflow attacks and

script injection attacks of all sorts affect all of the platforms from Java Enterprise Edition

(EE) to .NET.

C. SANDBOX CONCEPT (“SERVER OF ORIGIN”)
The Sandbox Concept or “Server Of Origin” concept states that no JavaScript

code will be executed on the client if it originates from a web site that lies outside both

42 Google Login New User Registration Page. (2007). Google.

61

the port and domain of the originating server. More specifically, on top of the domain

constraint, the Sandbox enforces that the server of origin matches port of origin as well,

so an Ajax call from port 80 cannot interact with one at port 8080 for instance.

Furthermore, because of the Sandbox, JavaScript is not permitted to perform any file

(I/O) Input/Output. The preceding restriction makes sense for several reasons. The client

might not want a compromised machine to contact it posing as a legitimate web site and

sending it malicious code to execute, which might alter or steal local files. This

“Sandbox” is good for security but bad for Mashups like HousingMaps.com that require

cross-site scripting. To circumvent the Sandbox constraint, typically, Web Services that

need to leverage Mashups must utilize a 3rd party proxy (servlet) at the sever-side to

contact and retrieve the relevant data and then have the server of origin deliver the new

data to the client. The preceding is obviously not a bulletproof security pattern but at the

program manager level, the decision of whether to implement a Mashup needs to take

this into consideration nonetheless.

D. CROSS SITE SCRIPTING (XSS)
Cross Site Scripting (XSS) is essentially a child of the fairly new but now widely

adopted method of attack called script injection. Script injection is not unique to the

Web, or even Ajax, since it has been around for years and can occur with traditional

desktop apps and even extend to the database with SQL injection attacks. Script injection

attempts to have the victim machine execute code by overloading buffers in unprotected

strings coming from user interface (UI) textboxes, web textboxes (HTML, .NET, Swing,

Ajaxian DHTML, or even URLs which pass parameters to servlets. Microsoft and Sun

have gone a long way to prevent script injection by deprecating older methods that

allowed for buffer overflow in the past but the problem is far from extinct. An XSS

attack injects a script into the page delivered to the client shortly before their web

browser renders it. Once the machine has been compromised various bad things can

happen such as cookie theft, session hijacking, keystroke logging, screen scrapes and

Denial of Service (DoS) attacks. Furthermore, with Ajax and its ability to

asynchronously call the server-side transparent to the client the power of XSS attacks has

increased in potential. No longer does the XSS have to passively gather screen scrapes or

62

wait for users to issue commands. With Ajax, the XSS Attack can send multiple

asynchronous calls to the server-side without the client noticing.

E. DISCUSSION OF SAMY WORM
In 2005, the first usage of an XSS based Ajax attack was observed on MySpace.

This new attack was called the Samy Worm43 and was extremely viral, infecting millions

of machines within hours. Samy was a user-profile on MySpace that had been

compromised by utilizing XSS. When viewed, Samy added the viewer to the Samy

friends list. Furthermore, the worm infected the client machine itself; in effect creating

it’s own Samy. Within 20 hours the Samy Virus had spread to a million machines

becoming infamous as one of the fastest spreading viruses ever. Technically speaking,

the Samy Worm introduced a technique of appending strings into disallowed JavaScript

keywords to accomplish its end state. Myspace actually disallowed many of the

keywords such as “onreadystatechange” and “innerHTML” that the Samy Worm used to

propagate itself. However, by dynamically calling the preceding method with String

manipulations (concatenations and appends), the worm was able to circumvent

MySpace’s security scheme.44 The XSS portion of the attack came from the fact that

profiles under the MySpace enterprise can be accessed using two different domains,

profiles.myspace.com and myspace.com. Figure 47 shows the general idea.

if (location.hostname == 'profile.myspace.com') document.location =
'http://www.myspace.com' + location.pathname + location.search;

Figure 47. XSS attack code from [44]. The code shows changing domains so that the
malicious JavaScript can satisfy the constraints of the Sandbox. From this point, a POST

was called which added the worm to the users friends list.

This new type of worm, the Ajax worm first appeared in 2005 and has

subsequently appeared again and again on the big Internet. In 2006, Yahoo got one

called Yamanner, which affected its email system by sending a copy of itself to the

compromised machines contact list.

43 Samy (XSS). (2007, June 22). In Wikipedia, The Free Encyclopedia.
44 Technical Explanation of the MySpace Worm.

63

F. CROSS SITE REQUEST FORGERY (XSRF)

A Cross Site Request Forgery45 is a malicious attack going in the other direction

(client to server). In the preceding attack, the XSS was really an attack on the client as

the agent of infection injected code into the client web page to be rendered and then

executed. Cross Site Request Forgery (XSRF) aims to take advantage of an inherent trust

between a Web Service and Web Browser by issuing illegitimate requests on the client

side. The preceding trust normally comes in the form of a cookie stored on the client

machine that has yet to expire. XSRF attacks are sometimes known as “riding the

session” as well. The client is typically tricked into clicking an image with a URL tag

that POSTs to an enitrely different website, a bank for instance. The victim in this case

might have a back up layer of protection with referrer headers sent to the server-side.

However, many users disable referrer headers due to privacy concerns, ala “Big Brother.”

In this type of attack, typically JavaScript is embedded within the <script> tag of page.

Counters to XSRF include having the server only respond to HTTP POSTs since the

<script> tag utilizes HTTP GET to do its work46. However, the preceding is also

problematic in that GET is optimized for performance. Various Ajax-based frameworks

tackle the preceding problem differently. Amazon quickly found out that XRSFs can be

dangerous and currently counters the problem of session riding by forcing re-

authentication of the session at various critical points within the enterprise such as users

changing shipping address for instance47. In general, the preceding is effective against

XRSF attacks. Figure 48 shows a comprehensive listing48 of how secure various Ajax

frameworks are “out of the box.”

G. PREVENTION OF ATTACKS
Now that the various techniques for getting to the JavaScript with malicious intent

have been discussed, the next obvious question is how are attacks prevented? There are

two schools of thought with regards to preventing JavaScript attacks. The first is to

45 Cross-site request forgery. (2007, July 6). In Wikipedia, The Free Encyclopedia.
46Jeremiah Grossman. (2006, January 27). Advanced Web Attack Techniques Using Gmail.
47 Chris Shiflet. (2007, March 15). My Amazon Anniversary.
48 Dave Crane, Darren James, and Eric Pascarello. (2006). Ajax in Action.

64

decline malicious requests altogether. The second is to process the request but to prevent

execution of the JavaScript response. One of the most effective ways to deter a

XSS/XSRF attack is to use some type of transient authentication scheme instead of a

persistent one like Cookies or HTTP Authentication. By transient, typically what is

meant is to keep the attacker guessing. A popular way of achieving this end is to

incorporate the current user’s SessionID into the URL. A similar approach might be to

include a user-specific token in HTTP Requests to be validated in addition to the client-

side cookie. With Ajax requests, the double submission concept is also very effective.

With the preceding, the stricter of the two cross-domain rules is adopted and enforced.

When Gmail was compromised by Jeremiah Grossman in 2006, he utilized XSRF

but with a twist. What Grossman basically did was email the victims a link to an off

domain site, assuming they were logged in if they were reading their email. By clicking

the link, the victim sent an off-domain HTTP request that also contained the session

cookies such as the request and response variables. In the response variable, the contact

list was stored as an unreferenced array to be parsed at runtime. When JavaScript parses

the array it calls the Array() method. Grossman basically overwrote the Array() method’s

constructor with his own malicious code, which iteratively looped through the stolen

contact list. Two lessons can be learned from this attack. The first is not to put any

sensitive data or sensitive business logic inside JavaScript. At the very least, wrap the

HTML tags around the data to prevent it from being accessed by script tags. Secondly, if

the JavaScript files must contain sensitive data make the urls unpredictable or ensure that

the file cannot be accessed by an off-domain referrer.

To prevent an attack such as Grossman’s what is needed on the server-side is to

prevent direct execution of the response. To do this the client needs to keep in mind that

it is clearly within their bounds to modify any data they receive before executing it.

Therefore, when the server sends out data during a response it will typically prefix or

suffix the data with something that will trick the attacker by stifling the JavaScript

Compiler. A perfect example of a prefix that might do the preceding can be while(1)

which can immediately stop any attack progress and place the JavaScript compiler of a

unauthorized client into an infinite loop.

65

The second approach to defending against a JavaScript attack might be to enclose

comments around any JavaScript that can legitimately run. In this method, the legitimate

client is already aware of the requirement to remove comments before the eval() method

for the JavaScript to work. However, the beauty of this method is that the attacker has no

way of knowing that this mechanism is in place.

Figure 48. A listing of popular Ajax frameworks and their ability to thwart JavaScript

Hacking from [48]. Note DWR’s ability to thwart most XSRF attacks and JavaScript
Hijacking attempts.

Hopefully, this chapter has provided the reader with a baseline of concerns to

address with any future Web 2.0 application, especially an Ajax one. The major points to

66

take home from a security angle are that with Ajax, a malicious attack need no longer

utilize iframes and wait for user input. The paradigm shift with Web 2.0 is that

asynchronous data can now flow back and forth and that of course includes malicious

data. From a program management perspective, the security needs of the individual

applications within the enterprise need to be closely evaluated and then and only then can

a competent security strategy be laid out. As was previously stated, the “Golden Mean”

is what is desirable, “knee jerk” security is hardly an optimal solution but it is obviously

better than nothing at all. Extremes, in general, are bad, both in terms of Ajax Security

and life. Additionally, Figure 48 shows the prospective program manager a table to

evaluate how a potential Ajax framework might stand up to the more popular attacks “out

of the box.”

H. CONCLUSIONS
As Google Gmail, MySpace.com, and now Apple have found Web 2.0 is a

double-edged sword at times. With the increased amounts of JavaScript come increased

amounts of vulnerability points in a perspective web application. Apple recently, patched

the iPhone to disallow XSS attacks in their Safari browser that can let hackers dial out on

compromised iPhones. The key takeaway of this chapter is application and defense of

the Sandbox concept. The security schema of a web site cannot allow the Sandbox to be

circumvented through direct execution of JavaScript code or predictable URL-naming

schemas. The preceding can be accomplished via mechanisms which allow for indirect

execution of JavaScript on the server-side by means only known to the developer such as

encasing all JavaScript with comments, or placing infinite loops in the JavaScript code

that are removed at run time by the server-side. To prevent XSRF attacks it is vital that

the URL schema of a website be unpredictable by incorporating random values such as

SessionIDs into the URLs. The security of the enterprise will always be of prime

importance for the DoD, thankfully JavaScript has been around for years and as a child

technology, Ajax inherits many of the lessons learned from that endeavor. The DoD has

clearly been successful with integrating JavaScript into web-based applications and if

they utilize the same policies while handling Ajax DoD will realize the same benefits and

successes.

67

VI. AJAX DESIGN PATTERNS FOR WEB SERVICES

A. INTRODUCTION
The term design pattern is oftentimes a bit confusing to the novice reader but is

really just an extension of a basic precept in computer science. The preceding is akin to

not “reinventing the wheel.” Design patterns give the Ajax developer and project manger

a lot of momentum going into a project by leveraging lessons-learned. The Naval

Aviation community has a saying that the Naval Air Training and Operating Procedures

Standardization (NATOPS), manual was written in blood. In a far less dramatic way

Java design patterns for web services are written in the same fashion. Typically, a new

design pattern for web services or web development in general is born from the project-

related disasters of the past.

By utilizing a combination of responsible design considering such things as

usability, performance, and security and a coherent testing SOP (Standard Operating

Procedure), a project will likely succeed. Christopher Alexander originated the idea of

design patterns in 1977.49 According to Alexander, the world’s set of architectural

patterns across cultures can basically be summed up into 253 patterns such as “Market

Full of Shops.” From the patterns, Alexander hypothesized that software engineering

might learn a lesson and establish a set of best practices that were recognized as such by

industry to prevent reinvention of the wheel. In this chapter, a thorough exploration of

Ajax design patterns to expose web services such as REST (Representational State

Transfer), RPC (Remote Procedure Call), and Ajax Stub. Various forms of messaging

within the context of a web service will also be discussed such as HTML Messaging, and

XML-Messaging, and the new JSON notation. The focus will be concerned with

industry best practices regarding usability of design weighed against performance.

49 Design pattern (computer science). (2007, June 5). In Wikipedia, The Free Encyclopedia.

68

B. OVERVIEW
Given the fact that design patterns have been around since 1977, it is of no

wonder that industry, in particular the open source Java enterprise solutions industry

utilizes them to the nth degree. However, the project lead, or project manager must

ensure that they do not put their total confidence in a single pattern. The preceding is

particularly important in terms of scalability. A good case study for the preceding can be

eBay itself, which was rewritten in 2000 for the Java Enterprise Edition (EE) platform.

eBay does a few unconventional things in the name of scalability such as attempting to

eliminate any and all session state50 and moving it to the persistence layer, which is

handled with a custom O/R (Object-Relational) Mapping solution (most likely a

Hibernate derivative). The preceding is where eBay differs from a pure Java EE

specification “by the book” implementation. A truly Java EE implementation typically

leverages the application server and application layer to manage state, while eBay

delegates state management to the persistence layer.

The point, of the preceding is not to delve into the weeds of the details of modern

day Java enterprise design decisions so much as to demonstrate that a pattern is merely a

suggestion. eBay lives and breathes scalability, which is the reason they migrated in the

first place as the upper limits of their Oracle databases were being taxed51. eBay

achieved horizontal scaling by splitting up their databases and mapping them to

individual use cases instead of entire business processes thereby avoiding entire

workflows being fed into a few monolithic servers.

C. RESTFUL DESIGN PATTERN
When discussing Ajax web services RESTful architecture is a concept that comes

about frequently in conversation. The goal of a RESTful architecture is to standardize

web service development by mapping actions to HTTP 1.1 methods (GET, POST, PUT,

DELETE) and resources to URLs. In the REST world, the server is seen as a big “blob”

of resources and access to those resources are controlled using actions (operations),

which map to respective HTTP methods. The RESTful architecture was the brainchild of

50 Nuggets of Wisdom from eBay’s Architecture. (2004, June 21).
51 Dan Pritchett and Randy Shoup. (2006, November 29). eBay Architecture.

69

a doctoral thesis by Roy Fielding52, who was also the main architect of HTTP v1.1.

Figure 49 is a diagram of the basic concepts behind REST.

Figure 49. A diagram of RESTful architecture from [54].

From a project manager’s perspective, REST is a very clean API to interface an

Ajax application with Web Services. In a way, REST promotes good practice by

honoring it. In other words, if the industry leaders are using RESTful Web Services it

will undoubtedly attract developers. Notable examples of the preceding include

Amazon’s REST API, and eBay’s REST API53. Developers fuel technologies and the

technology with the most developer support and momentum will win at the end of the

day. REST is currently considered by many to be a cleaner design pattern than Remote

Procedure Call (RPC). REST also conforms to the current industry belief that services be

stateless, idempotent, and self-documenting.

Within the REST world of web services design, there are two main principles:

resources as URLs and operations as HTTP Methods. A resource URL can be thought of

as a business entity, i.e., a noun. The key concept to grasp with regards to the resource

URL is that each resource has a unique URL in the RESTful paradigm. By operations as

HTTP Methods, the utilization of the basic HTTP Methods: GET, POST, PUT, and

DELETE are meant. REST seeks to leverage the basic HTTP Methods and map each one

52 Jim Standley. (2005). RESTful Architecture.
53 eBay REST Developer Center. (2007). eBay.

70

to corresponding actions. In summary, nouns or “things” in the web service architecture

are conveyed as resource URLs while verbs, i.e., “actions” are conveyed as operations on

HTTP methods. The methods can most logically be mapped to SQL (Structured Query

Language) commands. A GET is similar to a SQL SELECT, while a DELETE maps

directly to a SQL DELETE. POST is similar to INSERT with an auto-generated

(sequenced) ID. Finally, PUT is like INSERT or UPDATE IF EXISTS with a specified

ID. It is important to realize that the browser oftentimes caches GET requests locally

while other types of requests do not get the same treatment. The preceding are a few

design considerations that must be considered and weighed as GET requests also have

security issues involved with them as discussed in the Ajax security chapter.

Google Accelerator had an incident with the exact same problem in 2005, in what

is known as the Backpack-Accelerator Incident54. Google Accelerator is a proxy that

prefetches links for the client. Backpack is a non-RESTful web service providing

Calendar/Planner based services. In Mid 2005, Google Accelerator started to exhibit

strange behavior in its interaction with numerous non-RESTful Services. The design

flaw that Google Accelerator had was its assumption that all the web services that it

interacted with were RESTful and it therefore intermittently clicked on any link. The

way Backpack was designed, i.e., non-RESTfully; it frequently contained links (URLs),

which deleted user data via GET calls so Google Accelerator was inadvertently deleting

user data.

The following are advantages that utilizing a RESTful architecture can bring:

• RESTful Architecture supports the best practice that Web Services be

stateless in that one of its main goals is to be able to switch clients at any
time and obtain the same result. By doing so and being browser
independent, the Web Service will be more scalable. As an important
side-note, by stateless server-side only statelessness is intended here.
RESTful Architecture imposes no restrictions on what the client-side
chooses or chooses not to remember.

• RESTful Architecture supports the best practice that Web Services be
idempotent, that is if a message is sent from the client to the server the
result needs to be the same if it is sent once or ten times. The paradigm of
bounding all possible actions to the HTTP 1.1 paradigm of GET, PUT,

54 Michael Mahemoff. (2006). Ajax Design Patterns.

71

POST, and DELETE helps to facilitate and encourage this practice within
the community of Web Services that are RESTful.

• RESTful Architecture supports the best practice that Web Services are
self-documenting which entails that typically Base URLs describe
themselves. Furthermore, any error handling or degradation must
typically be verbose and as helpful as possible. A good self-documenting
Web Service paradigm will also rely on web standards such as XML
Schemas and Document Type Definition (DTD), which REST also does.

Issues with REST architecture include the lack of a search functionality (action),

which will inevitably lead to numerous customized “in-house” solutions. Furthermore,

between browsers while GET and POST are fairly standardized, PUT and DELETE most

definitely are not. Applications using the REST API pattern typically require more

maintenance than their RPC counterparts as well.

D. RPC DESIGN PATTERN
RPC (Remote Procedure Call) is currently the main alternative to REST in terms

of industry support for web service architecture. There are various forms of RPC, which

include: XML-RPC, Simple Object Access Protocol (SOAP) and Ajax Stub. RPCs are

generally characterized as actions with a verb like URL, i.e.,

http://www.foo.com/?command=startGame. A Popular application of the RPC concept is

embedded in the APIs of popular websites such as Flickr and Kiko. Figure 50 is a high-

level architecture of an RPC framework.

Figure 50. A notional RPC Service architecture from [54].

72

1. XML-RPC Architecture
XML-RPC is the simplest type of RPC call in that the client utilizes

<methodCall> and <methodName> tags which are exposed on the sever side as methods.

The client uploads an XML document that uses the aforementioned tags and the server

side returns the response, again as XML. SOAP is very similar to XML-RPC except it

extends the functionality of XML-RPC to include the ability to use custom data types and

asynchronous messaging. SOAP is intended to automate the translation of SOAP calls to

whatever the calling language is. From the preceding things such as Enterprise Java

Beans (EJBs) can be exposed as web services. SOAP is considered to be too obtuse and

bloated for its own good by many developers and is controversial.

2. Ajax Stub Architecture
This architecture seeks to automate the invocation of Web Services on the client

side by using JavaScript wrappers. Ajax Stub is more of an all-in-one solution to Web

Services than REST or XML-RPC in that while the preceding architectures will create

Web Services the developer still needs to invoke them on the client. In fact, the

Remoting is so abstracted away from the developer in this architecture that calls to

XMLHttpRequest or even its wrapper are also abstracted. The result is a framework that

is clear to the developer but may be a bit obfuscated under the hood. The preceding

might be a concern if many third party clients are interested in an Ajax-based Web

Service and wanted to use aspects of it. In the aforementioned scenario, obviously Ajax

Stub might pose problems if the framework used included developers who were lax on

documentation or comments. In ten words or less, Ajax Stub is nice but, at the project

management level, cognizant loss of control must be realized. Below is a high-level

diagram of a basic Ajax Stub architecture; note the extra layer of abstraction at the client

to make remoting transparent.

73

Figure 51. An Ajax Stub architecture from [54].

E. HTML-MESSAGE DESIGN PATTERN
HTML Message architecture sends HTML snippets to the client side, which adds

them to the DOM via an innerHTML call. However, HTML Message architecture needs

to be used sparingly because it couples services with display. The preceding makes

parallel development sometimes difficult. The reason to use the HTML-Message driven

pattern is generally when applying Ajax to legacy applications since HTML generation is

normally a part of the legacy application anyway. Also, HTML Message architecture is

generally good with performance and is also a good option if graceful degradation is a

key concern since most of the logic will reside on the server-side. Popular examples of

HTML Messaging include Digg Spy (Ajax-enabled dynamic news), http://digg.com/spy

and Rapha (Ajax Shopping Cart) http://www.rapha.cc. Figure 52 shows a high-level

architecture of a typical HTML-Message architecture.

74

Figure 52. An HTML Message architecture from [54].

F. XML MESSAGE ARCHITECTURE
In the past, communication between the server-side and the browser was done

with basic text messages. The architecture for the preceding might normally involve a

customized set of business logic at the application layer to parse what was normally a

very business-specific format. With XML, the headache has been remedied and, for

some time now, industry best practice has been to send messages back and forth using

XML. There are two major questions that the developer must answer after XML is

chosen as the data interchange format of choice. The first is to simply decide how the

server-side will produce the XML. The second is simply how the browser will convert

the XML. While the learning curve for the XML message architecture can be quite steep

at times, especially when learning to master XSLT it is clearly industry best practice and

has spawned such huge successes as Google Maps and Netflix and Protopage55.

1. Decide How Server Will Send XML

• Custom code to create XML string
• Build DOM object then serialize
• Use framework to convert data structures to XML
• Must decide on using schema or DTD

2. Decide How Browser Will Handle XML From Server-Side

• Manual JavaScript conversion
• Use XSLT (eBay uses this) to convert the XML to HTML

55 Protopage Home. (2007). Protopage.

75

Figure 53. Plain Text Message architecture from [54]. Housingmaps.com is a great real-

world example of how this architecture can create useful mashups.

Figure 54. XML Message architecture from [54]. Netflix’s Top 100 is a good example

of this architecture.

Figure 56 is a screenshot of Netflix and their Top 10056 page. Note that the user is easily
able to hover the mouse over any title and instantly bring up associated information and
the average user rating for the respective film. Utilizing an XMLHttpRequest call does
the preceding and the movie data comes in from the server-side as XML and gets
converted to HTML. Figure 55 shows the reader a basic structure of what the movie data
looks like in raw XML form coming from the server.

<MOVIES>
 <MOVIE ID="60031236" POS="17" DS="0">
 <TITLE>Kill Bill: Vol. 2</TITLE>
 <SYNOPSIS>In this film noir tale written ... </SYNOPSIS>
<DETAILS RATED="R" RELYEAR="2003" GENREID="296" GENRENAME="Action &&&
Adventure"/>

56 Netflix’s Top 100 Home.

76

 <STARRING>
 <PERSON ID="92495" NAME="Uma Thurman"/>
 <PERSON ID="20008295" NAME="Lucy Liu"/>
 </STARRING>
 <DIRECTOR>
 <PERSON ID="20001496" NAME="Quentin Tarantino"/>
 </DIRECTOR>
 </MOVIE>
 </MOVIES>

Figure 55. XML movie data on Netflix before conversion into HTML from [54].

Figure 56. Screenshot of Netflix Top 100 popup functionality from [56]. The figure

demonstrates a real-world application of XML Message architecture in action.

77

Figure 57. An example of an Ajax portal from [55]. The Protopage Homepage is also an

example of XML Message architecture. Google Maps is probably the most famous
examples of XML Message architecture. Information is downloaded in XML and

converted into HTML via XSLT on the client-side.

G. JSON MESSAGE ARCHITECTURE

When passing data between the server-side and the client, at times, a lighter,

cleaner implementation is desired. JavaScript Object Notation (JSON) is meant to fill the

preceding gap. JSON is a language neutral serialization format that allows for objects to

be sent over the wire whether they are written in C++ or Java or any language. JSON is

perfectly suited for passing parameters from the server-side to client-side because for all

intensive purposes it is JavaScript and is used in such practical applications as Kiko

Calendar57 and Yahoo Mindset.58

57 Kiko Calendar Home. (2007). Kiko.
58 Yahoo Mindset Home (2007). Yahoo.

78

1. JSON Advantages

• JSON is more compact than XML

• JSON typically faster to parse in browser

• JSON is a concrete data format no design decisions need be made
like with XML

• JSON slightly more supported in the browser since it is JavaScript
after all

• JSON Compatible with YAML (Yet Another Markup Language) a
lighter-weight version of XML

Figure 58. The potential advantages of using JSON as an intermediate data format from
[54].

2. JSON Disadvantages

• XML scales better than JSON

• XML more familiar to more people within the IT community

• Better libraries and tool support, XPath, XSLT Translators, i.e.,
Altova XML Spy

• While not a concrete format for data the extensible nature means
XML has the power to choose one of several implementations

Figure 59. The potential disadvantages of using JSON as an intermediate data format
from [54].

Figure 60. JSON Message Architecture from [54]. JSON was created in 2002 and is

sometimes a cleaner alternative to XML. JSON is generally faster to parse but XML
scales better. XML is also more well known and is more self-documenting that JSON.

Examples of JSON in practice include KIKO Calendar, an Ajax web scheduling
application.

79

Figure 61. An example of Submission Throttling from [54].

Figure 62. An example of Cross Domain architecture from [54].

80

Figure 63. Yahoo Mindset screenshot from [58]. Note the usage of a slider to influence
search results based on whether the search is shopping or a research based search. Again,

Web 2.0 is getting the world closer to a truly semantic web.

H. CONCLUSIONS

As seen with Google Maps, Amazon, eBay, and Nasa World Wind the ability to

expose a set of well-designed APIs to the public will exponentially increase the amount

of traffic and popularity of a web site while at the same time providing rich-value to the

customer. The preceding situation is a win-win in that the customer gets an interface to

useful web services for their own personal applications while the service provider gains

that much more influence within industry by serving as an intermediary for 3rd party web

applications, i.e., Web 2.0 mashups. The entire idea of a mashup such as

Housingmaps.com really started with Google Maps. Google Maps is certainly a

disruptive technology and is certainly a flagship example of the potential of applying

good design principles such as the using the appropriate amount of Ajax and the usage of

XSLT on the client. By utilizing similar principles, X3D-Earth can leverage Ajax,

Ajax3D and web services to not only create a server-side geospatial web application, but

also expose a rich set of APIs for the DoD and industry alike to use.

81

VII. AJAX3D

Figure 64. Ajax3D Logo from [59]. Ajax3D is a way of modifying the 3D scene graph

dynamically by using asynchronous server-side methods.

A. INTRODUCTION

The Ajax3D59 concept was created by Tony Parisi (of VRML fame) in August,

2006. Basically, Ajax3D is simply applying Ajax techniques such as manipulating the

DOM on both server and client side, but on a 3D scale. More specifically Ajax3D is

dynamically manipulating the X3D scene graph, through the ISO SAI (Scene Access

Interface), on the client-side through calls to XMLHttpRequest. The SAI component has

a similar construct called createX3DfromURL.60 Through the usage of Ajax3D, and a

few new X3D nodes custom-tailored for the X3D-Earth Project an X3D geospatial

system is completely viable.

B. OVERVIEW
The world of X3D browser plug-ins closely mirrors that of the real world

“Browser Wars” that occur between rival organizations such as the one between Mozilla

and Firefox and Internet Explorer. With regards to 3D Browsers currently not all support

the SAI, but what is important to note is that all are moving towards supporting the SAI.

Currently, only Flux and Xj3D support the usage of tying Java into X3D nodes by

utilizing SAI. 3D browsers also suffer from the lack of a real industry de-facto standard.

While certainly Flux and Xj3D have been out for years, there is no dominant browser to

build one big user base from, with the helpful forums and developer groups that follow as

a result. However, some of the other browsers such as Octaga have shown great potential

for growth owing to their minimalist yet intuitive user interface. Currently, the

59 Ajax3D Project Home. (2007).
60 Tony Parisi. Ajax3D: The Open Platform For Rich 3D Web Applications.

82

bottleneck of development with regards to a server-side X3D-Earth lies with the X3D

browsers. As was previously mentioned, there is really no strong industry force to

standardize the X3D browser and as such they are all feature-different. Once the browser

technology matures on the X3D side of things, and each vendor possesses a working

implementation of Geospatial Nodes, then the concept of X3D-Earth on the server-side

can migrate from theory to reality.

C. X3D SCENE ACCESS INTERFACE (SAI)
It is important to realize that the X3D equivalent to the DOM is the SAI. Through

the X3D SAI, Ajax3D will apply XMLHttpRequest in a similar way to how it is applied

in the usual sense of a 2D three-tiered web application. The preceding will work as long

as the 3D Browser in question is SAI-Compliant. Figure 65 is a screenshot of the current

X3D SAI architecture61.

Figure 65. The ISO SAI Architecture from [61].

61 Len Bullard. (2007, April 25). AJAXing the X3D Sequencer: ISO SAI Architecture.

83

D. AJAX3D HELLO WORLD EXAMPLE

In this first example, a simple “Hello World” application62 will be built utilizing

X3D and Ajax techniques. The final result is shown in the Figure 66.

Figure 66. An example of a dynamic Hello World with the help of Ajax and X3D from

[62].

The first step in integrating Ajax3D into a static web page is to use the HTML

EMBED or OBJECT tag. The tag is displayed in Figure 67.

<embed width=”640” height=”480” name=”FLUX” src=”helloajax3d.x3d”
type=”model/x3d” dashboard=”0” bgcolor=”0xFFFFFF”>

Figure 67. An example of an EMBED tag referencing X3D within presentation layer
from [62].

62 Tony Parisi. (2006, October 12). Ajax3D Hello World Example.

84

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN"
"http://www.web3d.org/specifications/x3d-3.0.dtd">
<X3D profile='Immersive' >
<head>
</head>
<Scene>
<NavigationInfo type='"EXAMINE"'/>
<Transform translation='-3 2 0'>
<Shape>
 <Text DEF="DynamicText" string='""'>
 <FontStyle size='2' family='sans'/>
 </Text>
 <Appearance>
 <Material diffuseColor='0 0 0' emissiveColor='.2 .33
1'/>
 </Appearance>
</Shape>
</Transform>
</Scene>
</X3D>

Figure 68. X3D Source Code for Hello World Example from [62]. Note no text values
exist yet.

Once the X3D has been successfully embedded, browser DOM manipulations can access

the X3D Scene Graph with a few more lines of code. The following JavaScript code

assigns a Flux object to the browser DOM and then grabs a handle to the X3D by calling

the getExecutionContext() method on the browser object.

var context = browser.getExecutionContext();

Figure 69. An example of obtaining handle to X3D scene graph using ISO SAI from
[62].

Once the handle to the X3D Object has been established, the Ajax3D developer must

then call methods which traverse the X3D scene graph.

var theText = content.getNode(“DynamicText”);
or
var nodes = content.getRootNodes();

Figure 70. An example of accessing individual nodes in X3D using the ISO SAI from
[62].

85

Within the SAI, dynamic behaviors are defined via two methods: Events and

Listeners. In the SAI, an event is either a settable field or a field that fires a callback to

the SAI when its contents change. The SAI also has a Listener construct which are

objects that have callback methods that are invoked when an event is generated. Figure

71 shows a TouchSensor, which responds to user mouse clicks.

var observer = new Object;
observer.readableFieldChanged = clickCallBack;
sensor1.touchTime.addFieldEventListener(observer);

Figure 71. A TouchSensor call within the Ajax3D script from [62].

Next is the fun part of the tutorial and the real meat of dynamic X3D, which is the

actual dynamic generation of 3D content. The SAI supports dynamic X3D through input

as strings or URLs. The following code is an example of creating X3D dynamically from

a string:

var BoxShapeString = “<Shape><Box size = ‘.5 .5 .1’/><Shape>”;
var newscene = Browser.createX3DfromString(BoxShapeString);

Figure 72. An example of Dynamic X3D scene creation using the ISO SAI from [62].

E. AJAX3D DYNAMIC SCENE CREATION EXAMPLE

One of best ways to visualize Ajax3D is by step-by-step example. The following

tutorial will introduce the reader to basic Ajax3D Dynamic Scene Creation63. The first

step is to download the file named ajax3d-dynamic.zip from:

http://www.ajax3d.org/content/t3/indexa.html.

The tutorial is completed in two steps. The first step is to load the dynamic

content using XMLHttpRequest. The second step is to dynamically create a 3D Object

and add it to the scene. The tutorial does need an additional setup step which entails

creating an EMBED tag within the html page to associate any X3D content with the Flux

browser. The preceding setup is shown in Figure 73.

63 Tony Parisi. (2006, October 12). Ajax3D Dynamic Scene Creation.

86

<embed width="640" height="480" name="FLUX" src=" " type="model/x3d"
dashboard="0" bgcolor="0xFFFFFF">

Figure 73. An EMBED tag pointer to associate X3D content with the Flux Browser from
[63].

Traditional server-side Ajax techniques differ slightly from Ajax3D in that many

of the traditional Ajax frameworks handle JavaScript automatically for the development

team. Typically, the JavaScript is generated on the fly through a “JavaScript Engine”

which is basically a library of jars that contain the java code needed to keep the developer

programming in java. Unfortunately, at this time no such libraries (Java Engines) exist

for Ajax3D. Therefore, the next step lays out modifications to a few JavaScript files,

which will later be referenced in the presentation layer.

Step 1: Load the Dynamic Content using XMLHttpRequest (edit tutorial.js)
In this step, tutorial.js is the primary driver of this action. The major parts of the

tutorial.js are included below for reader convenience. Note that this example is

dependant on Flux as the 3D browser plug-in and Microsoft Windows running on the

client machine.

// in the body of onClick:
str = sendRequest(request);
// Helper function to create request
function createXMLHttpRequest()
{
 try { return new ActiveXObject("Msxml2.XMLHTTP"); } catch (e) {}
 try { return new ActiveXObject("Microsoft.XMLHTTP"); } catch (e)
{}
 try { return new XMLHttpRequest(); } catch(e) {}
 alert("XMLHttpRequest not supported");
 return null;

}

// Helper function to perform request; synchronous to keep it simple
for now
function sendRequest(url)
{
 var xmlhttp = createXMLHttpRequest();

 if (xmlhttp)
 {
 var i;
 xmlhttp.open("GET", url, false);
 xmlhttp.send("");

87

 // now extract the views based on the response, repopulate
array, list, and form items
 return xmlhttp.responseText;
 }
}

Figure 74. Tutorial3.js Code Snippet showing XMLHttpRequest Object from [63].

In the JavaScript code, function createXMLHttpRequest() creates two types of

objects either IE compliant or Firefox compliant for a more cross-browser compatible

application. However, the Flux-dependency on the Windows platform is still a problem.

The sendRequest() function utilizes the XMLHttpRequest object to do the send request.

The send request can be called either synchronously or asynchronously, which is a key

point to remember. In this example, send is called synchronously but if one wished an

asynchronous call can be achieved by a callback function passed as an argument to

send().

Step 2: Dynamically create a 3D object and add it to the scene (edit ajax3d.js)
After obtaining the X3D data dynamically to interact with the scene graph, the

developer must now call the correct node by utilizing the SAI. The major parts of the

ajax3d.js file are included in Figure 75 for reader convenience.

function createX3DFromString(str)
{
 var scene = browser.createX3DFromString(str);
 var rootnodes = scene.getRootNodes();
 var i;

 // Do a bit of work to deal with the quirky X3D add/remove root
node paradigm
 for (i = 0; i < rootnodes.length; i++)
 {
 node = rootnodes[i];
 scene.removeRootNode(node);
 context.addRootNode(node);
 }
}

Figure 75. The ajax3d.js code snippet showing X3D node retrieval from [63].

In the code, the createX3DfromString method simplifies node retrieval into one

composite function than can be called multiple times. The code traverses through the

array of returned nodes, removes them, and then adds them to the live object. Once the

88

code is working, Figure 76 shows how the screen appears in the client web browser after

loading index.html, assuming that Flux or a compatible browser is already installed as a

plug-in.

Figure 76. Initial Screen of Ajax3D tutorial after correctly loading index.html but before

pressing any buttons for geometry from [63]. Note a black screen can be seen at this
point, as no user input has occurred.

89

Figure 77. X3D scene in Flux browser after pressing cube, cone and sphere buttons

respectively from [63].

F. CONCLUSIONS

From the preceding code examples, hopefully, the reader can see the potential

benefit that Ajax3D can provide to the X3D-Earth initiative. Ajax3D allows for the

XMLHttpRequest object to provide the service member with dynamic XML-based

content based on input from web controls or traditional X3D constructs such as

eventListeners or touchSensors. However, X3D-Earth still needs the ability to quickly

and automatically add overlays to any terrain that is auto-generated by Rez. The

preceding might either arise from the development of new nodes based on the Proto Node

specification or can arise from an agreement from within the X3D community to

standardize entirely new nodes meant to facilitate the design of X3D terrain overlays.

Such an effort can be best served if KML were kept in mind during any potential

speculation of node addition due to the fact that it is a de-facto industry standard.

By doing this, X3D-Earth can provide layering information that can dynamically

change as the user zooms in/out of the terrain. However, instead of using a client-side

90

application and OpenGL to do the rendering, the X3D-Earth client can do the same by

utilizing any standard web browser with an X3D plug-in. The need for asynchronous

data flow is critical, in this case, because of the dynamic nature of viewing terrain data.

In such applications, users frequently wish to change their viewing window by zooming

in and out and changing the rotation and orientations as well. From a usability standpoint

alone, Ajax3D is critical to the success of the preceding. Imagine having to reload the

scene graph with every zoom operation within X3D-Earth. Google Maps is a web-based

Ajax application that manages to avoid page refreshes upon zooming or dragging events.

X3D-Earth can do the same by leveraging Ajax3D on the server-side, which holds much,

more potential for forward deployed forces and can be an idea that is just as

revolutionary.

91

VIII. INTEGRATING X3D-EARTH WITH KML AND COLLADA

A. INTRODUCTION
With regards to the X3D-Earth initiative, one huge area of concern is the ability to

add layering functionality in the future to terrain sets. By layering, roads, zip code data,

landmarks, 3D Buildings is inferred. The preceding problem set has already been

semantically defined in what is known as Keyhole Markup Language (KML), an XML

markup language for describing terrain. KML was created by the Keyhole Corporation,

which was acquired by Google in 2004. The Keyhole terminology, in the definition is

not random; it is in reference to the old Cold War Era “KH” spy satellites64. Since 2004,

the KML format has been integrated into a zipped format called KMZ. Furthermore,

since 2006, a new interchange technology called Collaborative Design Activity (Collada)

has emerged as an industry standard for textured 3D buildings within terrain systems. By

utilizing KML, KMZ, and Collada, for 3D overlays and buildings, huge strides can be

realized within the X3D-Earth Project and the concept of a viable terrain system based on

X3D can be born.

B. OVERVIEW
In order for the X3D-Earth project to really add any value to the DoD, overlays

need to be embedded on top of the terrain. For instance, an overlay of a Predator UAV

track might be desired, or an Ajax Panel containing icons representing armored divisions

might be implemented so commanders on the ground can do planning at the theater level

through Ajax-supported drag-and-drop (see Figure 33 for ICEfaces drag-and-drop

exemplar) into an X3D window. Picasso is quoted as saying, “Good artists copy, great

artists steal,” such is the case with how X3D-Earth can approach Google and their KML

2.1 specification. Again, there is no need to reinvent the wheel and create a custom X3D-

Earth terrain overlay markup language. KML is also currently up for standardization

with the Open Geospatial Consortium (OGC) 65, http://www.opengeospatial.org, as a

64 Keyhole Markup Language. (2007, September 4). In Wikipedia, The Free Encyclopedia.
65 KML Open Geospatial Consortium, OGC Best Practice 2.1.0.

92

standard way to perform the business of terrain overlays and is already considered a de-

facto best practice, according to the OGC.

C. X3D-EARTH
The X3D-Earth project was started as a follow on effort from the Web 3D Open

Geospatial Working Group. Associate Professor Don Brutzman and Mike McCann of

the Monterey Bay Research Institute head the X3D-Earth Working Group. X3D-Earth

has several goals66 all of which are necessary for DoD to leverage 3D geospatial data on

the web but not get locked-in to a specific vendor while doing so.

• Build a backdrop X3D model of planet Earth

• Use publicly and privately available terrain datasets

• Use publicly and privately available imagery and cartography

• X3D technologies will be applied to maximize interoperability among
spatially aware implementations

• Provide linkable locations for any place

• Provide hooks for physical models

• Use open standards, extensions and process

• Define functionality in a platform-independent manner

Figure 78. A listing of the established goals of the X3D-Earth Working Group from [66].

Currently, the X3D-Earth Working Group has been enormously successful in

establishing an underlying foundation for a potential server-side solution to X3D-Earth.

Through the promotion and utilization of open source standards the group has an

established 3D model archive called Savage Model Archive, which contains military

models of interest for use in 3D visualizations. While the Savage Model Archive does

not have the breadth of models as a system like Google 3D Warehouse, it provides

valuable exemplars for how meta-data needs to be handled which give 3D models

platform specific behaviors at runtime. One of the major criticisms of Google 3D

Warehouse is that its libraries contain models with inadequate or non-existent meta-data.

66 X3D-Earth Home Page. (2007). Web3D Consortium.

93

Furthermore, the working group has been successful at establishing partnerships

with industry such as Sun and Nasa to further develop open solutions and standards for

the DoD. Recently, the X3D-Earth Working Group acquired terabytes of storage by

purchasing Sun Storage Area Network (SAN), servers for an eventual implementation of

the geospatial system to be feasible. As a point of reference, Nasa World Wind is

approximately a 4.6-terabyte67 geospatial system.

Figure 79. Rez-generated model of Panama City Florida integrated into MOVES Savage

Studio tool from [68]. The integration of Rez-generated models into Savage Studio now
allows DoD Modeling and Simulation to run discrete-event simulations over more

detailed terrain spaces than was previously possible.

Recently, with the help of a series of working group members, Rez-generated

models of San Diego, Panama City, Baltimore Harbor, San Clemente Island, and Oakland

Harbor have been auto-generated68 and integrated into the Savage Studio tool. Figure 79,

shows an example of a Rez-generated model of Panama City from within the Savage
67 NASA World Wind. (2007, September 7).
68 Byounghyun Yoo. (2007, July 6). Multi-resolution Representation of Geospatial Information.

94

Studio tool. Savage Studio is a Java Application designed by the Scene Authoring and

Visualization for Advanced Graphical Environments (SAVAGE), working group at the

Modeling Virtual Environments and Simulation Institute (MOVES), to provide real-time

discrete event simulations over 3D terrain. Currently, the X3D-Earth Working Group is

working on attempting to standardize the Geospatial node specification across X3D

browser implementations such as Flux and Xj3D. At the same time, the working group is

also involved with alpha testing current Geospatial Node output in Rez to ensure that

both the tiling mechanism and browser implementations are correct before moving

forward with an actual implementation of an X3D-based geospatial system.

D. X3D-GEOSPATIAL NODE OVERVIEW
 If X3D-Earth is ever to become a reality it is critical that the key players in the

working group agree on implementation of a standard geospatial node. Currently, the

specification69 is being closely scrutinized with the intent of ensuring modern-day

relevance by removing any unnecessary element references and adding references that

may make sense in today’s more defined and mature geospatial system marketplace.

While the current specification is certainly capable of providing a geo-referenced X3D

scene, the working group must decide on whether or not the specification has all the

elements needed to drive a modern day geospatial system. Currently, Rez, Flux, and

Xj3D support the X3D geospatial node in theory. However, within the X3D-Earth

working group alpha testing is currently being conducted to eliminate some of the bugs in

practice. Figure 80 shows an outline of the current set of tags for an X3D geospatial

node.

 The specification supports either geodetic or geocentric reference frames. A

geodetic reference frame is the common elliptical earth model that is derived from a

latitude-longitude centric view of the earth. A geocentric reference frame supports

projection of the aforementioned ellipsoid on to a simple surface like a cylinder. The

specification currently supports 23 earth ellipsoid models including the popular World

Geodetic System 84 (WGS84).70

69 X3D Geospatial Node Specification, Web3D Consortium.
70 World Geodetic System. (2007, August 9). In Wikipedia, The Free Encyclopedia.

95

 By default, X3D utilizes single precision floating point values to reference all

geometry, which is normally fine for most standard resolution displays under 1600 x

1280 since sub-pixel noise can lose any precision gains. However, with geospatial nodes

a unique requirement comes into play in that single precision numbers are insufficient. A

single precision float has 23 bits of mantissa, which means that a coordinate can be

accurate to one part per 8,388,607 or 223. In a typical WGS84 ellipsoid, the equatorial

radius is 6,378,137 m. By dividing the equatorial radius of the WGS84 ellipsoid by the

8,388,607 a dividend of 0.8 is reached. In this case, 0.8 m is the maximum amount of

geospatial precision that a single precision floating point can provide in a geospatial

system. While certainly, not bad the precision can be improved. Therefore, the X3D

Geospatial specification includes a construct called GeoOrigin, which allows for high

precision coordinates using double precision floats.

3D Geospatial Node
GeoCoordinate

GeoElevationGrid
GeoLocation

GeoLOD
GeoMetadata

GeoOrigin
GeoPositionInterpolator
GeoProximitySensor *

GeoTouchSensor
GeoViewpoint

Figure 80. The X3D Geospatial Node specification from [69]. Above is a table of URLs
containing references to the specific components, which define an X3D Geospatial Node.

Note that as per the specification there are two levels of Geospatial Node compliance,
levels one and two respectively. Current, 3D browsers only support level one which does

not include a GeoProximitySensor.

The geospatial domain is unique in that velocity needs to be scaled to be realistic.

For example, at sea level a speed of 100 meter per second may be perfectly acceptable

but at altitudes in the upper atmosphere 100 meters per second is relatively slow for

navigation purposes. In the specification the GeoViewPoint node handles the preceding

problem space for the developer.

96

Currently, the X3D Geospatial Node specification for GeoProximitySensor is not

supported by any of the current family of 3D browsers. The preceding is definitely an

issue which needs to be resolved if any geospatial system is to developed. GeoProximity

Sensor basically issues events to listeners, which respond to the user either navigating

into or out of a bounding box, or rectangular space in 3D. Such a construct can be vital

to allowing the lazy loading of tiles to take place on the client-side. If

GeoProximitySensor were currently supported by the major 3D browsers there is no

reason why Web 2.0 technologies like Ajax or most-likely Comet, in this case, might not

provide reliable and asynchronous server-side data to the client without having to reload

the entire scene graph.

E. KML SPECIFICATION OVERVIEW

KML71 is currently used by Google Earth, Google Maps, and Nasa World Wind

to describe and add value to their terrain data. The class tree for KML 2.1 is shown

below. Note that as of May 31, 2007 a beta version of KML 2.2 has been released. The

2.1 version of the KML class tree is shown here instead due to the fact that the current

beta version of the KML 2.2 specification is a living document and subject to change.

71 KML 2.1 API Reference. (2007). Google.

97

Figure 81. A class tree diagram of the KML 2.1 specification from [71].

F. KML IN GOOGLE MAPS
Note that in the KML Specification, such things as BalloonStyle and LabelStyle

are defined. The “balloon” is one of the most obvious and recognizable aspects of the

Google Maps72 application. A typical “balloon” is used as a way to place mark a location

within the map area. Below is a screenshot of a set of “balloons” within the Google

Maps application. Also take note of the LookAt element, which adds the ability to

72 Google Maps. (2007). Google.

98

determine the orientation of the scene with which to define the terrain system.

Figure 82. Balloon KML element at work within Google Maps from [72].

Figure 83 is a screenshot of a basic KML file, which describes a basic scene within

Google Earth73 consisting of a simple Place mark tag and a tag for latitude and longitude

(defined by a coordinates tag). The specification also allows for a simple scene

description.

Figure 83. A basic KML file showing place mark coordinate and description tags from

[71].

Figure 84 is a screenshot of the result of double-clicking on the KML file

(loading) from Windows Explorer. The KML file operates like any other media file and

is linked to Google Earth instead of the typical media application such as Windows

Media Player or QuickTime.

73 Google Earth. (2007). Google.

99

Figure 84. The identical KML Simple Placemark defined in Figure 83 from [73]. Note
that the Simple Placemark is loaded from the Google Earth client-application at runtime.

Figure 85. This is city level view of a Simple Placemark from [73]. Note that the KML

layer provides city limits boundary data as well as city naming data. Demographics,
crime statistics and much more can also be added as well. This is where the power of

KML really shows itself.

100

Figure 86. This is the same Simple Placemark from [73]. Note that this figure shows the

Google Campus at the highest level of resolution in Google Earth (Street Level) showing
its location right in front of the Google Campus in Mountain View, California. Note the
3D Buildings layer and the building texturing that comes included as a feature of Google

Earth 4 through the adoption of Collada for 3D buildings.

G. EASY 3D BUILDING OVERLAYS WITH COLLADA AND KMZ

KMZ technology is nothing more than zipped KML with all necessary textures

included. In fact, users frequently open up the KMZ file to explore its contents with

WinZip, or any other decompression after renaming the extension to .zip. Since the

announcement of Google Earth 4 in January of 2007, Google has introduced support for

Collada technology into their KMZ files. The arrival of Google Earth 4 and the need for

textured 3D buildings is also the primary driver behind the KMZ format as it is a more

convenient way of encapsulating many textures with the KML that arranges and geo-

positions them. What this means is that in every KMZ zip file not only has the necessary

KML file included (always doc.kml for the KMZ format constrained by the specification)

along with the necessary textures; but a Collada directory structure is included as well.

The preceding entails including the main Collada .dae file in the model sub-directory and

associated textures in the images sub-directory are also now packaged in Google Earth

distributed KMZ files.

101

H. COLLADA AS A 3D INTERCHANGE FORMAT
Collada technology came about from industry desire for a compatible 3D

interchange format for 3D modelers which can work in harmony with all the major 3D

modeling tools such as Maya, 3D Studio Max, and XSI. In the past, 3D Model format

has been a major sticking point and point of frustration for modelers in that there have

been no well-received standardization efforts within the community. In 2006, adopting

an XML based approach Collada was born. Collada is part of a larger Industry

Consortium called The Khronos Group, which seeks to standardize a variety of 3D

technology in general. From a terrain system perspective, Collada is the tool that X3D-

Earth might need to utilize in order to realize a textured 3D Buildings Layer.

By utilizing Collada, Google Earth 4 was able to add drag and drop functionality

to their terrain system. What this means is that a 3D Modeler can develop a building

Model in Maya, 3DS Max, or any modeling tool and, after saving the file in Collada

format (.dae) they can literally drag and drop the .dae file into a Google Earth window

and have the new building display. The Khronos Group founded in 2000, by such

industry leaders as 3D Labs, Intel, ATI, NVIDIA, Sun, and SGI, currently maintains the

Collada Specification. The goal of the Khronos Group is to better facilitate standards

within the realm of open source 3D platforms. Support from industry, for the Collada

specification, has been strong and typically comes in the form of plug-ins. Maya, 3DS

Max, XSI, and Adobe Photoshop CS3 are currently a few of the high profile names that

are already on board. By utilizing Collada, Navy modeling and simulation can augment

current capabilities of drag and drop, such as those that currently exist with Savage

Studio. By doing this, and cleaning up the implementation while at the same time

aligning themselves with industry standards Navy modeling and simulation will be

setting themselves up for future success.

I. INTEGRATING COLLADA AND X3D

From the significant amount of industry momentum behind Collada such as Sun,

nVidia, and SGI it may seem that Collada and X3D are destined to clash, as they are both

XML-based means for describing 3D content. In a recent whitepaper entitled Developing

Web Applications With X3D and Collada, X3D author Tony Parisi collaborates with

102

Collada creator Dr. Rémi Arnaud of Sony Entertainment in answering the question of

how to potentially integrate the two technologies74. In the paper Parisi and Arnaud,

argue that while a few people in the 3D community think that Collada and X3D cannot

exist, the two formats were in reality meant to complement each other. The new Collada

format is specifically geared for Digital Content Creation or (DCC) such as moving high

polygon-count models between different 3D authoring tools like AutoDesk and Maya.

From that point, Parisi argues that a future X3D will more easily be able to accept

Collada without the need for any fancy conversion tools or external plug-ins and argues

that while X3D is a delivery format, Collada is an interchange format. X3D is a

visualization tool whereas Collada is mainly a content to promote DCC and rich content

much like it is already used to provide rich content to the gaming industry. Figure 87

provides a comparison of the domains covered by both Collada and X3D.

Figure 87. A comparison of the domains of Collada and X3D from [74]. Note that
Collada is mainly a format for digital content creation and integration into 3D worlds.

X3D is a delivery and scene visualization format.

Ideally, the Collada and X3D specifications can look like a standard workflow

where Collada is a tool to create rich digital content and X3D is the medium on which

74 Rémi Arnaud and Tony Parisi. (2007). Developing X3D Web Applications With Collada and X3D.

103

that content is published or resides. Figure 88 shows the ideal Collada to X3D workflow

in the context of building a web application. Media Machines recently released a Google

Maps mashup where the user can peruse through certain specific buildings on a typical

overhead orthographic view and click on them to bring up a 3D browser popup showing

the buildings 3D model. The individual building models were a result of converting

Collada files from Google’s 3D Warehouse into X3D using Flux Studio. Figure 89

shows a screenshot of this.

Figure 88. An ideal workflow for developing web applications using X3D and Collada

from [74]. Note that Google Earth is in this model as one of the two main real world
applications of Collada. In any future X3D-Earth initiative Collada can be considered an

enabler for rich 3D building models just as it has worked for Google Earth.

104

Figure 89. Mashup created by Media Machines from [74]. The figure is showing a
converted Collada (.dae) file shown in the browser as X3D. The mashup is an Ajax-

based extension of Google Maps.

J. GOOGLE 3D WAREHOUSE

In this paragraph a methodology for importing KMZ files into Blender for further

export into VRML or X3D is described. In the example, AT&T Park is downloaded as a

KMZ file from Google’s 3D Warehouse 3D75 Content Repository. The 3MB Google

Earth Version and not the Sketchup 5 version is the file format that needs to be

downloaded. The file can be found at:

http://sketchup.google.com/3dwarehouse/details?mid=1933f060194b3cd9c7fa50fe56240
75&prevstart=0.

75 Google 3D Warehouse. (2007). Google.

105

Figure 90. AT&T Park file available for download from [75]. Nearly all of the files in

the system use the new Google Earth 4 Collada format called KMZ.

K. IMPORTING KMZ INTO BLENDER FOR BUILDING MODELS

Blender is currently one of the most articulate and well-supported open source 3D

modeling tools on the Web. Blender’s strengths include its large user-base, forum-based

approach for tracking bugs, and its ability to allow users within the Blender community

to extend functionality by using a Python script plug-in. The current KMZ and Collada

plug-ins in Blender 2.44 are a direct result of the preceding fact. By leveraging user

efforts within their own open source community Blender is able to react quickly to

changes in the marketplace and survive and stay relevant.

The AT&T Park geometry will then be imported into Blender once the plug-in is

correctly installed. At that point, the user still must texture the model manually.

However, the KMZ file conveniently provides all the textures necessary once unzipped.

The process of setting up the plug-in is a five-step process outlined in Figure 91.

106

1. Download and install the latest version of Blender 2.44 from www.blender.org
2. Download and install the latest version of Python 2.5.1 from www.python.org
3. Download the Python KMZ Import Script from:
 http://jmsoler.free.fr/didacticiel/blender/tutor/py_import_kml-kmz_en.htm
4. Copy the .py file from Step3 into local Scripts Directory in Blender (typically):
 C:\Program Files\Blender Foundation\Blender\.blender\scripts
5. Reopen Blender and do a file->import and note the new KMZ import
functionality

Figure 91. This is a basic outline of the five-step process to import KMZ into Blender for
quick 3D building modeling.

Figure 92. Location in Blender of new KMZ import functionality once the Google Earth

plug-in is correctly installed.

107

Figure 93. Imported AT&T Park geometry in Blender. Textures for the model exist but

still need to be manually added in the current version of the Blender Google-KMZ plug-
in.

The power of the preceding idea is that it allows for the X3D-Earth Working

Group to possibly use content that is typically royalty free and in the public domain and

to import that content into X3D. Currently, the 3D Warehouse is the largest repository

for public domain 3D Buildings on the Web and is growing every day. The ability to

drag and drop boilerplate buildings into X3D-Earth is a huge win for DoD Modeling and

Simulation if they can successfully apply this technology towards a server-side X3D-

Earth implementation. However, to do so directly from the 3D Warehouse might require

DoD to partner with Google on mutually beneficial terms to secure Google’s permission

to aggregate the 3D models into a production-ready X3D-Earth. In the interim, it is

recommended that X3D-Earth avoid using 3D Warehouse models in any production-

ready applications until such a deal is ever worked out. Until that time comes, if ever,

X3D-Earth can apply the recommendations of Parisi, and Arnaud and utilize Collada as a

tool for fast DCC. By using KMZ, i.e., integrating Collada with KML, X3D-Earth can

support geospatial models that plug-in to Google Earth and likewise use any models from

contributions within the 3D modeling community in a much more standardized way.

108

At first, the preceding may seem to be a contradiction in terms, in that the X3D-

Earth project was intended to be open-source. For a moment though, consider the fact

that even in an X3D-Earth environment where no partnership with Google exists, DoD is

still paying employees, contractors, and third-party vendors, such as Planet 9 Studios a

hefty fee already for building models. Furthermore, even the most open-source friendly

platforms such as eBay, which runs on the Java EE platform, have proprietary nodes in

the enterprise in the form of Microsoft servers for certain tasks. Again, the goal of open-

source is not to paint the enterprise up and down with open-source. The goal of open-

source is to minimize proprietary systems within the enterprise while still remaining

flexible enough to insert proprietary nodes when they make sense. The main point to

take away is that while it might be possible to obtain a handful of open source 3D

models, the aggregation of a whole collection of professional-grade models for numerous

cities and platforms throughout the world is going to cost money if it is to be done in any

reasonable amount of time. The preceding is an unfortunate reality.

L. LIMITATIONS AND OPPORTUNITY: GOOGLE 3D WAREHOUSE
LICENSING STRUCTURE

Based on Google’s current 3D Warehouse Terms of Service76 it might be in the

interest of the DoD to attempt to create a partnership with Google based on the sheer size

and quality of the models in the 3D Warehouse in order to obtain permission to aggregate

the 3D into an open source geospatial system. At first, the notion of Google accepting

such a partnership might seem unlikely. However, thinking back to the days of Microsoft

vs. Apple, one of the reasons Microsoft got as big of a lead as it did was through the

aggressive formation of partnerships in industry. Historically, Microsoft crushed

competition with the leverage from its operating system paired with its many partners. A

DoD partnership with Google Earth on mutually acceptable terms might dramatically

affect their biggest rival, Microsoft and its Virtual Earth product which some say has

made recent gains on Google Earth owing to it’s more robust building generation

algorithms. Currently, DoD pays myriad contractors to generate building models for

simulations, which of which already exist in aggregated form in the 3D Warehouse. The

76 Google 3D Warehouse Terms of Service. (2007). Google.

109

terms of service of Google’s 3D Warehouse are specifically nebulous for their own

protection with regards to actually aggregating the models into a geospatial system in that

they do not emphatically prohibit the aggregation of models under their terms of service

but rather obligate the interested party to obtain their permission to do so. To own such a

system today the DoD needs express permission from Google to aggregate the models in

3D Warehouse. However, doing so is clearly the lesser of two evils for two reasons:

breadth and the sunk-cost of obtaining 3D building models.

The first is that the DoD infrastructure for creating a huge model repository with

as large a breadth from within DoD is simply non-existent. The DoD does do certain

things very well however, such as modeling 3D weapons platforms, which is an area in

which Google’s 3D Warehouse cannot compete. Furthermore, the DoD can most

certainly model its own bases much better than Google might ever dream. However, if a

true geospatial system is desired by X3D-Earth, entire metropolitan areas need support

not just the gated contents of military bases. Similarly, the DoD cannot attempt to

compete with Google 3D Warehouse in terms of modeling commercial 3D buildings as

the infrastructure and experience is simply not there. While it is true that several smaller

archives exist, a geospatial system needs models aggregated on a large scale and it also

helps if the models are commonplace enough to already be recognizable by users who

have experience in geospatial system domains like Google Earth. Additionally, even if

the DoD did setup a high-profile web-based repository of 3D models what might prevent

3D Warehouse models from continuously being uploaded as original-content and causing

additional liability concerns for the DoD in either case? The answer to the preceding

question is of course like anything in computer science, i.e., another level of abstraction

or in this case having to impose additional moderation and cleanup functions on the

repository. The question X3D-Earth must answer is whether that effort will produce a

system of models that the DoD can use both in and outside the gated perimeter in a

reasonable amount of time.

Second, is that historically the DoD has contracted out the modeling of 3D

buildings continuously anyway. The acquisition of a library of professional-grade 3D

models will typically incur a cost because they take too much expertise and man-hours to

build. If the DoD is perfectly willing and able to pay Planet 9 Studios or any other third-

110

party vendor or contractor to incorporate models in to their simulations why not partner

with the best of breed? Planet 9 Studios certainly cannot compete with Google, on a

geospatial level, and if the DoD is paying money for 3D buildings they need to come

from the best-received and most cross-platform format, which is the KMZ archive file

format, based on KML and Collada. Industry support and momentum count and when

Google along with the Khronos Group agree that Collada can be used for an interchange

3D building format, that holds a lot of weight. In Google Earth’s application of the

Collada format for 3D buildings, a disruptive technology was practically applied and just

like with all disruptive technologies it pays to be partnered with an early adopter and

invest in the technology, which will exponentially grow and provide the enterprise which

cheaper and more flexible future opportunities as a result. It is always more expensive to

be a late adopter.

M. LACK OF METADATA IN GOOGLE 3D WAREHOUSE
While Google’s 3D Warehouse is certainly an example of a successful 3D

building repository it has a few big problems. The first is the lack of professional grade

military models, which is where Savage Model archive thankfully steps in to the benefit

of the entire DoD. Savage Model archive is an excellent example of how the DoD can

produce excellent models of things within its own domain. The second and crucial

problem is lack of metadata. The preceding is where the Savage 3D Model archive at

NPS can also help. Google 3D Warehouse can also learn a lot from the Savage Research

Group at NPS, and actively work to more precisely define models within their archive

through the use of meta-data. In 2006, Travis Rauch77 wrote a thesis concerning Savage

Modeling and Analysis Language (SMAL) for Tactical Simulations and X3D

Visualizations. In this work, Rauch’s main argument is that SMAL can be used to feed

simulations important data about 3D entities by extracting out meta-data such as range,

flight envelope, et al. In short, Rauch argued that by utilizing metadata modern day

simulations can plug-in to the metadata to provide real value to the simulation instead of

just existing as geometry as has been the way of doing business in the past. Figure 94

77 Travis Rauch. Savage Modeling Analysis Language (SMAL): Metadata for Tactical Simulations

and X3D Visualizations. Master’s Thesis, Naval Postgraduate School, Monterey, California, March 2006.

111

outlines Rauch’s notional SMAL architecture. Note the central emphasis placed on

metadata in the diagram and the reference to the Savage Model archive.

Figure 94. Diagram from thesis work done by LCDR Travis Rauch in 2006, outlining the

ability of metadata to be used directly in the simulation to drive the characteristics of
entities. Such characteristics might notionally be things like weapons or flight envelopes

and ranges of various DoD platforms from [77].

In September 2006, LT Patrick Sullivan, USN wrote a landmark thesis entitled

“Evaluating the Effectiveness of Waterside Security Alternatives for Force Protection of

Navy Ships and Installations using X3D Graphics and Agent-Based Simulation.”

(Sullivan 2006)78. In the work, Sullivan outlines a methodology for incorporating

78 Patrick J. Sullivan. Evaluating the Effectiveness of Waterside Security Alternatives for Force

Protection of Navy Ships and Installations using X3D Graphics and Agent-Based Simulation. Master’s
Thesis, Naval Postgraduate School, Monterey, California, September 2006.

112

metadata-rich models from the Savage Model Archive into Savage Studio to potentially

train DoD service members on various aspects of Waterside Force Protection. Due to its

current lack of metadata, Google 3D Warehouse models would be unable to be as easily

plugged-in to Savage Studio as native Savage Model Archive models.

In September 2007, LT Wilfredo Cruzbaez, USN wrote a thesis based again on

the practical application of SMAL to complete learning objectives. The work is entitled

“Effectiveness evaluation of Force Protection Training using Computer-based Instruction

and X3D Simulation” (Cruzbaez 2007)79. The thesis is based on a formal usability study

to evaluate the effectiveness of using Savage Studio as a training tool for Waterside Anti-

Terrorism / Force Protection (AT/FP). The value of SMAL for training is that with

SMAL, Savage Studio allows for simulation-entity properties such as “center of gravity”

or “cruise speed” to be dynamically altered during the exercise to attempt to meet specific

learning objectives. The final product of the Cruzbaez thesis is a Computer Based

Training Course (CBT) that is learning-objective-based and effective. In the work,

Cruzbaez found statistical significant results using Savage Studio as a CBT based on the

administration of a pre-test and post-test on AT/FP doctrine. The results of the work

showed that there was an approximate 40% increase in the AT/FP post-assessment score

of subjects after completing the CBT-based training in Savage Studio.

N. CONCLUSIONS
Geospatial information is less useful if it cannot be put into contexts. By

contexts, roads, street names, metadata and points of reference in general are implied.

Due to its widespread acceptance by industry, KML is a useful tool in providing an

information overlay on 3D terrain data. Since KML is XML-based it is inherently GIG

compatible and ready to be integrated with other systems out of the box. Furthermore,

the context of geospatial visualization improves by orders of magnitude with the ability

to overlay 3D buildings and provide features like demographic data such as population or

crime-rate, on mouse-rollover with server-side event listeners. To accomplish the

79 Wilfredo Cruzbaez. Effectiveness evaluation of Force Protection Training using Computer-based

Instruction and X3D Simulation. Master’s Thesis. Naval Postgraduate School, Monterey Ca. September
2007.

113

preceding in an open-source context and minimize cost, the utilization of commercial 3D

content on Google’s 3D Warehouse is recommended as long term goal for X3D-Earth if

any agreements are reached with regards to terms of use. At the same time X3D-Earth

can use the Savage Model Archive to provide geospatial content and meta-data for

military-related content. Until then, and until such a deal is ever in fact reached, it is

recommended that X3D-Earth use models exclusively from the Savage Archive or Nasa

World Wind’s small library of 3D building models. Numerous commercial tools exist to

import Collada buildings into the X3D format, along with a few open source tools such as

Blender and Flux Studio. Through the application of both heavy reliance on KML as a

standard for geospatial overlays, and Collada for 3D Buildings the X3D-Earth initiative

can make fast headway on a moderate-cost alternative to contracting out their commercial

3D modeling requirements.

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

IX. REZ TERRAIN DATA CONVERSION INTO X3D

A. INTRODUCTION
For a geospatial system to work, two things must be acquired. The first is

obtaining the necessary orthographic imagery of the area you are interested in. Such

imagery is often substantial in square pixel size, (read thousands, i.e., 10000 x 10000 not

hundreds). Such imagery is also fairly easily obtained by going to the United States

Geological Survey (USGS) Seamless Data Distribution Website80 or by utilizing a third-

party application such as Global Mapper81. Once the imagery has been obtained a image

slicing scheme must be agreed upon and applied to the image to produce the effect of

varying levels of detail as the user zooms in and out which is illustrated in the Figure 106.

Finally, a program needs to exist which maps the myriad tiles, which are produced by the

image slicer on to 3D terrain data. For the longest time, X3D and specifically the X3D-

Earth Working Group did not have such a tool. However, with the introduction of Rez

now it does, which means that a server-side 3D Earth implementation is now a real

possibility.

B. REZ OVERVIEW
The Rez binaries and source can currently be found on http://planet-

earth.org/Rez/RezIndex.html. According to author Chris Thorne, Rez is a terrain file

parser and translator framework82 able to output a single tile or a series of multi-

resolution tiles. Rez is written in Java and is licensed under the GNU GPL (General

Public License). The idea for utilizing the power of Rez to generate 3D cities actually

came from attempting to integrate Ajax and X3D into the previously described Ajax Web

Prototype Application that had been written for Naval Postgraduate School Research

Professor Arijit Das, and his Mobile Device Checkout requirement. After successfully

getting the prototype working with the ZK Framework, the next logical step was to

attempt to graphically show registered-users in the system that had overdue mobile

80 USGS Seamless Data Distribution System. (2007). USGS Website.
81 Global Mapper Homepage. (2007). Global Mapper.
82 REZ Design Architecture. (2007, June 26). Rez Source Forge Homepage.

116

devices. To do this, at the time, a simple Ajax tab panel was added to the reports page.

At first, a simple X3D Model of the Earth was used for proof of concept. Once the tiled

3D Earth was embedded into the Ajax control and the performance and aesthetics of the

model were acceptable, the realization that you can build entire geospatial systems this

way came to mind immediately. From that point, a desire was produced to auto generate

the first X3D-Earth city model with multiple levels of detail. The idea behind this was to

essentially be able to show a local city such as Seaside, California and in a similar

fashion to Google Maps show red balloons where late users resided according to the

address they provided at registration time. Figure 95 is a ZK tab panel in the first Ajax

Prototype application that was developed for the Naval Postgraduate School Mobile Lab.

Note that the 3D Earth example was generated by Rez and is embedded within the panel

of an actual Ajax tab panel control, not a div tag or table in a webpage.

Figure 95. The Earth tiled at two levels of detail (LOD) within an Ajax ZK tab panel

control.

117

Figure 96. An Ajaxian Tab Panel reporting of checked-out mobile devices/books

After working closely with Dr. Byounghyun Yoo, at the Naval Postgraduate

School, and after approximately a month of working with the Rez API, a breakthrough

occurred when we attempted to import elevation data using VRML rather than the more

technical GeoTiff or DEM formats. Rez currently supports multiple input formats

GeoTiff, DEM, DTED, and VRML being just the few that it can support. However, at

the time the notion of using Rez was new, and as novice users we needed the simplest

implementation just to get a model to serve as proof of concept. By realizing that

importing elevation data in VRML was indeed dramatically simpler, modeling cities with

Rez became a reality. After running the Rez GUI front-end, which calls the Rez Java-

based executable, it took about 15 minutes to build the first auto-generated X3D-Earth

model of a city, Oakland Harbor to be specific. Shortly thereafter, Dr. Yoo produced a

set of slides with the intent of showing others how this automated process can work for

any city. At this point, the next step is creating a viable server-side architecture that can

effectively create the illusion of scrolling in the 3D Browser. Once that is accomplished

there is no limit as to what this technology can accomplish. The slides are included

below as a set of figures with a link given as well for more in depth exploration by the

interested reader.

118

Figure 97. Diagram showing the basic idea behind LOD tiling from [68]. Note that as

the client zooms in the amount of tiles representing the terrain start to increase
exponentially.

Figure 98. A diagram of the LOD concept where the image sharpens as the distance to it

decreases from [68]. Note how the target node changes in X3D from Billboard to
IndexedFaceSet to Cone, as the user gets closer to the target node.

119

C. STEP-BY-STEP INSTRUCTIONS FOR GETTING STARTED IN REZ

The set of slides presented in this thesis can be found at

http://www.byoo.net/x3d-earth/.

The prerequisites for successfully running through the example slides are an

installed Java Development Kit 1.2 or greater, and Global Mapper 8,

http://www.globalmapper.com, and of course Rez (imageSlicer and Rez binary file). It is

important to note that orthographic data from the USGS can be used in a similar manner

to build a more open source solution, however, for the novice Rez-user Global Mapper 8

provides a much richer interface and is therefore used in the exemplar application

concerning how Rez works.

Figure 99. Step 1: Download Orthographic Imagery from Global Mapper 8 by clicking

Download Free Maps/Imagery from TerraServer on the Global Mapper home screen.

120

Figure 100. Step 1a: Select Download Urban Area High Resolution Orthographic

Imagery and then give Global Mapper an urban city and press Ok.

Figure 101. Step 1b: City will load tile by tile and the orthographic imagery will be very
high resolution (street level). At this point the user can choose various means of

exporting the orthographic imagery from the File Export menu, i.e., jpeg, GeoTiff etc.

121

Figure 102. Step 2: A diagram showing downloaded elevation data. In Global Mapper

navigate to the main menu and choose to view DEM format. The next step is to export
the terrain data for Rez (VRML Elevation is one of the easier formats to export but most

other formats are also supported by Rez).

122

Figure 103. A diagram showing Baltimore Harbor DEM data in Global Mapper 8.

Figure 104. Step 2b: Under the File->Export menu in the upper-left choose to export the

elevation data in any format but VRML (.wrl file) is typically very easy and
recommended. This is an example of DEM data from the San Jose area being exported to

VRML.

123

16 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Global Mapper

Figure 105. An example of VRML elevation data from GeoMapper once successfully

downloaded from [68].

8 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Running

imageSlicer
● java -Xmx1000M -classpath .;.\slice.jar SmoothImageSlicer

"D:\...\baltimore.jpg" 0 8 n 512 512 y n n
● Parameters:

▬ start level of LOD tree
▬ end level
▬ verbose flag ("y" means print useful messages for debugging)
▬ x dimension of output image (pixels)
▬ y dimension of output image
▬ binary/quadtree flag: "y" means produce quadtree
▬ gif image output flag : "y" means generate gif images
▬ geoVRML flag : "y" means format names of images to match the

south-north grids of geovrml

Figure 106. Step 3: Run the imageSlicer to generate tiles at various LOD to match the
specifications and needs of any specific project. Figure 106 showcases a few of the most

important command-line switches that the imageSlicer can handle. Figure 106 is from
[68].

124

9 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Running

Rez
● java -DdebugOn=false -classpath ./Rez.jar rez.Rez testX3D.txt 0 8 1.2 n y 0 1 0.

1 100 100 0 0 n
● Parameters:

▬ configFile: configuration file
▬ firstTreeLevel: starting tree level
▬ finalTreeLevel: final tree level
▬ detailScale: a scale factor applied to adjust detail (LOD range values)
▬ gzipFlag: to compress the output files
▬ samplingFlag: turns on sampling of tiles to reduce number of polygons in low level of d

etail levels. For performance improvement.
▬ SamplingIncrement: the number by which the sample size is increased
▬ horizontalScale: the number by which the terrain size (x and z dimension) is multiplied.

Must be 1 for GeoElevationGrid output
▬ heightScale: The number height is multiplied by (reducing height tends to improve perf

ormance).
▬ minOutputTileDimension: min and maximum output tile dimensions when sampling larg

e input tiles
▬ maxOutputTileDimension
▬ translation x: it may in some cases be necessary to apply translations (scaling not alway

s enough)
▬ translation z
▬ treeType: generate binary tree(y) or quadtreee (n)

Figure 107. Step 4: Run Rez to overlay the VRML (or additional format) elevation data

with the LOD image tree to generate X3D. Figure 107 is from [68].

4 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Features

Inputs:

● Apart from the input elevation file(s), important inputs are the plugins for input d
ata parser, scene generator and output tiler.

▬ DTED (plugins/ParseDTED)
▬ vterrain.org BT format (ParseBT)

gtopo30 or DEM (ParseTopo plugin)
▬ Etopo5 (ParseETopo5 plugin), etopo5Asci
▬ Asci (ParseAVAscii plugin, or ParseAVAsciDegrees) - e.g. from ArcView asci export
▬ Asci xyz data
▬ Arcview bil (ParseAVBil plugin)
▬ VRML ElevationGrid (ParseEG plugin)
▬ GeoVRML GeoElevationGrid (ParseEG plugin, or ParseEGDegrees)
▬ General grid style height fields: the (ParseAVAscii can be used to parse a simple asci gri

d height field and the bil parser can be used for binary (16 bit float) height fields. Howe
ver note the header information needed in the install instructions.

▬ convenience versions of ParseAVAscii and ParseEG that assume the grids are measured
in degrees rather than meters.

▬ parsing xyz data

Figure 108. Slide showcasing the various formats that Rez supports for terrain data.

Figure 108 is from [68].

125

5 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Feature

Outputs:

● output tile generator plugins for:

▬ Combined VRML tile- for creating one tile from multiple tiles (combinedVRML/Combiner
Tile)

▬ Combining then splitting (VRMLCombineSplit)
▬ Comact binary tree output (compactBSP/CompactVRMLTile).
▬ Compact binary tree output that only outputs a slice (compacBSPSlice/CompactVRMLTil

e).
▬ Comact binary tree output with PixelTextures (compactBSP/CompactVRMLTilePix)
▬ ContouredJpeg - the height data in colour bands (pretty limited) (contouredJpeg/Conto

uredJpeg).
▬ Cutting a rectangular pice out of a grid (compactBSPCut)
▬ Slicing a piece of terrain off a grid (compactBSPCut)
▬ GeoVRML working group GeoElevationGrids (geosurface/GeoVRMLTIle).
▬ Geospatial X3D output (experimental still). (geoX3d/GeoX3DTile).
▬ GreyScale jpeg (heightMap/GreyScale)
▬ Gtopo - a binary height grid format with separate .hdr files (gtopo/GtopoTile)
▬ Height map - just converts height values to integers then into RGB encoding ((heightMa

p/HeightMap)

Figure 109. Slide showcasing the various formats that Rez supports for X3D output. Note

that Geospatial X3D is supported but is still in alpha testing. Figure 109 is from [68].

10 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Example

imageSlicer

Figure 110. Screenshot of Rez imageSlicer running in a terminal. In the lower right
portion of the diagram a file view of the individually sliced tiles is shown as they might

appear in a directory-view on a typical Windows machine. Figure 110 is from [68].

126

11 Byounghyun Yoo / NPS / 2007-05-18 / www.byoo.net

Rez

Figure 111. In the left section of the diagram, the GUI tool for Rez is shown which allows

a user to set the most common Rez parameters such as levels of detail or tile dimensions
from [68]. In the future, a GUI upgrade for Rez is strongly recommended. In the right

section of the diagram, Rez is running in the terminal doing the work of overlaying
orthoimagery on top of elevation data and then mapping the result to X3D tiles.

Figure 112. An auto generated Rez output in X3D of Oakland Harbor from [68].

127

D. REZ CONCLUSIONS AND RECOMMENDATIONS
While Rez is clearly an enabler for the X3D-Earth project, it has several areas that

need the immediate attention of the X3D-Earth Working group to fully realize its

potential such as image slicing, and exhaustive testing of Rez produced Geospatial nodes.

It is recommended that the Rez imageSlicer be optimized. The imageSlicer currently

uses more memory than the average user’s laptop can possibly afford to yield. Therefore,

current Rez models are forced to use a lower resolution than the current orthoimagery

allows. Normally the orthographic imagery is significantly better than the Rez

imageSlicer can support. Currently, the Rez imageSlicer is a Java application without

any GUI interface. The imageSlicer uses JNI (Java Native Interface) to call Sun’s C

Libraries, which is also a concern and generating compile time warnings. As of Java

Development Kit 1.6 the legacy methods are currently deprecated. The concern with the

proprietary libraries is that they may get dropped from the next Java Development Kit

release.

Another issue arose which suggests a possible Rez rewrite to support the tile

format used by Nasa World Wind. Figure 113 shows Nasa’s current format83, which is

supported in Global Mapper 8 through direct tile export (although this process literally

takes hours). The preceding process is also what dstile, Nasa World Wind’s tiling-

software, uses. In the future, if the X3D-Earth Working Group wishes to partner with

Nasa World Wind Geospatial Services, it makes sense for the tiling systems to be the

same.

83 Nasa World Wind Tiling Schema. (2007). Nasa.

128

Figure 113. A diagram of Nasa World Wind’s current tiling schema from [83].

The testing of the integrity of the Rez generated Geospatial Nodes is currently

ongoing and being led by NPS Visiting Post Doctorate Researcher Dr. Byounghyun Yoo,

Rez creator Chris Thorne, and Associate Professor Don Brutzman. Once the Geospatial

Nodes have been tested as accurate on both the Rez-end and various client-side browser

implementations such as Xj3D, the potential for creating X3D geospatial systems using

Rez across the full scope of the Earth will be excellent.

129

X. INFORMAL GOOGLE EARTH USABILITY COMPARISON

A. INTRODUCTION
Usability can either make or break a system. Over the years, Jakob Nielsen has

emerged as one of the industry’s foremost experts on the topic84. One of Nielsen’s most

important concepts, yet when thought of seems common sense, is that any and all content

that is extremely important to the context of a prospective web site needs to reside in the

upper left corner of the screen, at least for cultures where people read from left to right.

Nielsen also stipulates that with today’s current technology most users give up on a site if

it does not come up in less than five seconds. Surprisingly enough, many web sites and

desktop applications as well violate this first basic rule of thumb.

Owing to the fact that the X3D-Earth Project’s scope is so massive, it seemed like

a good idea to do a usability study on the two major Geospatial players, Google Earth and

Nasa World Wind, so that when X3D-Earth gets implemented the successes and mistakes

that were made in both respective systems are considered in X3D-Earth. Figure 114 is a

summary of Nielsen’s work with Web Page delay and showcases the effect on the user85.

Delay < 0.1 No delay noticed

0.1 ≤ Delay ≤ 1 Delay noticed by user but thought flow not interrupted no

progress indicator required

1 ≤ Delay ≤ 10 Progress Indicator Needed

Delay > 10 Major delay, user needs detailed message here

Figure 114. Delay Table based on Jakob Nielsen’s Work Outlining Client Patience
Threshold on the Web from [83]. Note that a progress indicator is typically needed if the

client experiences a delay between 1 and 10 seconds.

84 Jakob Nielsen. (1999). Designing Web Usability.
85 Jakob Nielsen. (1994). Response Time: The Three Important Limits.

130

B. OVERVIEW
In March of 2007, an informal usability study between Google Earth and Nasa

World Wind was conducted to attempt to find the best practices in modern terrain system

design. From the study, the relative superiority of Google Earth to Nasa World Wind

with regards to usability was demonstrated. Major factors, which were instrumental in

the preceding, included the integration of the Google Browser into the terrain system,

particularly in the upper left corner of the screen where most people focus their attention.

Secondly, in Google Earth the detailed urban orthographic imagery layer is a given as it

is set to display at a default setting. Nasa World Wind has a default setting of no urban

orthographic imagery layer; most likely for performance reasons. The detailed results

and methodology of the study is included in Part D below.

Figure 115. Run time screenshot of Google Earth User Interface running on Mac OS X

from [73]. Google Earth runs on most platforms including Mac OS X while Nasa World
Wind runs solely on Microsoft Windows.

131

Figure 116. A Google Sketchup model of Alcatraz Island from Google Sketchup. (2007).

Google. Retrieved July 14, 2007 from http://sketchup.google.com. Sketchup is an
excellent 3D modeling tool for allowing “mere mortals” to create and publish content

onto Google Earth.

Figure 117. The Nasa World Wind user interface from [83].

132

C. TEST METHODOLOGY
The experiment was conducted in the Savage Lab within the Moves Institute at

the Naval Postgraduate School in Monterey, Ca. The experiment was conducted on a

Toshiba Satellite A75-S213 3.3GHz machine with 1 GB of RAM. Before execution of

the tasks, video was recorded of the screen using a Canon DC10 4 Mega pixel DVD

Camcorder. During the execution of each task, users were given absolutely no

instruction or guidance on how to use either system.

Each of the users were asked to complete the following tasks and instructed that

under no circumstances were they to feel pressured to complete all or any of the tasks in

the 30 minutes of allocated time. The only thing that was asked of the users was to

alternate between using Google Earth and NASA World Wind as they traversed the task

list. The users were encouraged to keep their efforts stress free and fully allowed to skip

entire tasks entirely once they became too difficult. When a user was finished with the

experiment, to their own level of satisfaction, they were asked to stand up and fill out a

post-assessment form on an adjacent table.

1. Locate and find Caesar’s Palace in Las Vegas, NV

2. Locate and find the Senate in Washington, D.C.

3. Find approximate point-to-point distance between top of Washington Monument and
the top of the U.S. Capital Bldg.

4. Locate and find your house.

5. Locate and find eBay in San Jose, Ca

Figure 118. Task list for the Google Earth vs. Nasa World Wind Usability Study
conducted at the Naval Postgraduate School Scene Authoring for Advanced Graphical

Environments (SAVAGE) Research Laboratory in 2007.

D. RESULTS
 The results of the study are pretty clear, at least for the assigned tasks. In almost

every instance, Google Earth was preferred over Nasa World Wind. In this study the

subjects’ preference for Google Earth was approximately 2:1. Incidentally, the rate at

which subjects aborted tasks in Nasa World Wind compared to the rate at which tasks

were aborted in Google Earth is also approximately 2:1. Figure 119, shows the raw data

133

collected during the recording of the video by later analyzing the video for mouse

completion and time clicks, completion times are measured as a matter of minutes and

seconds.

Figure 119. Average user-time to complete a task between Google Earth and World Wind.

134

Figure 120. Average subject-satisfaction level between geospatial systems in the Google
Earth vs. Nasa World Wind study based on a ten-point scale.

Figure 121. Average subject-satisfaction chart showing the nearly 2:1 preference subjects

had for Google Earth over Nasa World Wind.

Overall
Satisfaction

Google
Earth

Nasa World
Wind

Participant 1 6 2
Participant 2 6 4
Participant 3 6 1
Participant 4 7 3
Participant 5 5 5
Participant 6 7 3
Participant 7 5 2
Participant 8 4 2
Participant 9 7 3
Participant 10 6 4

Avg Satisfaction 5.9 2.9

135

Figure 122. Average time per task in Google Earth and Nasa World Wind Usability Study.

Note that on average World Wind tasks took nearly twice as long to complete as their
Google Earth counterparts.

136

E. DISCUSSION AND RECOMMENDATIONS
From this experiment it quickly became clear, even without the participant video,

that users preferred Google Earth to Nasa World Wind. The most telling aspect of this

comes from the task-abandoned category, which only shows tasks abandoned while the

participants were using the Nasa World Wind system. In no case, during the study, did a

participant abort any task while using the Google Earth system.

It should be noted that significant further development has occurred with each

system, and that a formal study was not conducted. A needs analysis and formal study

along the lines of the work of LT Wilfredo Cruzbaez might well yield different results. It

is recommended that such a study be conducted.

From the post-assessment questionnaires that were administered to all

participants, in this study, the same conclusions were registered. In every instance, users

rated Google Earth easier to use in each category, i.e., General Navigation, Vacation

Planning, and Topographic Data etc. From the same questionnaire, participants were also

in general agreement that the most important control, in terms of easing navigation, in

both systems, was an integrated web browser. This study asserts that part of the problem

with usability in Nasa World Wind was the fact that there was no integrated web browser

within the visible 3D Window. In Nasa World Wind, a “Place Finder” option allowed

the user to bring up a Yahoo search tool but many participants found the preceding to be

non-intuitive and even found the tool itself to be inferior to Google’s search engine.

The second major problem that participants had with Nasa World Wind was the

fact that, owing to the task listing, many of the general navigation tasks required users to

zoom down to street level to complete the task. However, by default Nasa World Wind

has its high-resolution urban orthographic data layer disabled. Of note is that feature is

extremely easy to enable in World Wind. However, the problem is that, in this study,

participants were all novices and many did not know the definition of orthographic and

what an orthographic image is. The preceding spawned a whole slew of problems and

frustrated users when Nasa World Wind did not produce an acceptable level of detail

when the subjects zoomed into street level to find a specific location. Most likely, the

137

low default resolution was a conscious decision on the part of the Nasa developers to

reduce system lag in order to increase performance.

The third and final major problem that most participants had with Nasa World

Wind was the fact that the Nasa servers frequently lagged and at times lagged severely.

The preceding is why it is suspected that the high-resolution orthoimagery is by default

disabled in World Wind. Oftentimes in the experiment, participants opted to start a task

in World Wind and while the Nasa terrain data was still loading, they eventually switched

windows to Google Earth to continue other assigned tasks in order to save time.

F. CONCLUSIONS
The major takeaway from this usability study is that customers do not have a high

tolerance for non-intuitive interfaces. The major reason Google Earth outperformed Nasa

World Wind was not because of content, which was rather similar but rather because of

the assumption by Nasa World Wind that their interface might be easy to use solely

because of the Apple OS X style navigation system at the top of the screen. Although the

preceding does have an element of truth to it as fisheye controls have shown to be

preferred in at least some cases by a University of Maryland study86. The subjects did

comment favorably about the OS X style menu bar, but were turned off by Nasa’s design

decision to not put any search functionality at the first level of the user interface. While it

is clearly functional, Nasa’s Yahoo-based search function is buried in the third level of

their menu hierarchy while Google’s is in the upper left corner of the main screen-first-

level (right where Jakob Nielsen might recommend it to be). Nasa World Wind might

also have improved its user experience if the detailed orthographic image layer was

turned on instead of off by default. When comparing systems, new users do not have

patience and when they zoom-in to the street-level of a geospatial system it needs to be

comparable to industry leaders Google and Microsoft or the customer will run (not walk)

away. These preceding design considerations need to be integrated into any future X3D-

Earth solutions.

86 Benjamin Bedersen. (2000). Fisheye Menu Usability Study.

138

THIS PAGE INTENTIONALLY LEFT BLANK

139

XI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
X3D-Earth has the ability to change the way the DoD does business. Detailed,

high polygon-count models of Oakland and Baltimore Harbors, Panama City Fl, and

Indian Island have already been auto-generated by Rez and look professional-grade.

Owing to the fact that multiple client-side solutions for geospatial systems exist such as

Google Earth, Nasa World Wind, and Microsoft Virtual Earth, it might be in the best

interest of the X3D-Earth working group to attempt to create a server-side solution while

still solving important Anti-Terrorism / Force Protection (AT/FP) issues by continuing to

integrate existing high polygon-count models into the Savage Studio discrete-event

modeling tool. Furthermore, by leveraging existing open standards such as the Khronos

Group’s Collada specification, DoD Modeling and Simulation can complement the rich

3D content libraries for the myriad platforms under its umbrella with commercial

building entities like skyscrapers and airports. The preceding is made possible through

the widespread adoption of the Collada format for DCC and its popularity with 3D

modeling heavyweights such as Autodesk and XSI. In doing so, the DoD can hopefully

build up an even bigger repository that it already has with the Savage Model archive,

while at the same time ensuring that Savage meta-data continues to be added to any new

content for the description of various platform parameters at runtime.

Ajax and Web 2.0 have the ability to provide the DoD, and in this case the Navy

in particular with the rich-client user experience that many so often are missing because

of NMCI. Ajax and Web 2.0 are extremely relevant in today’s Navy because many end-

users feel powerless to run the types of applications on their machines that they actually

feel they need and want but which are not NMCI-compatible. A great feature of the Web

is that applications need not be deployed. With Ajax, the traditional paradigm of

request/response has been replaced with a much smarter and intuitive asynchronous flow

of information across the wire from client to server, and even from server to client if

Comet is used. Again, nothing scales like the Web and nothing is as interoperable as

XML. The DoD mandate for everything to be GIG compliant demands nothing less and

thankfully for the Navy, Ajax and Web 2.0 deliver in spades. Google was the first to

140

show the power of Ajax when they created the first 2D geospatial system in Google

Maps, and also pioneered a great 3D system as a standalone client-application. To really

make a difference though in how the DoD and, more specifically NMCI operate, any 3D

system needs to be on the server-side. A server-side Ajax3D-based X3D-Earth can

alleviate many of the NMCI deployment issues that might inevitably arise from any

client-side open source solution. Furthermore, a server-side solution can theoretically be

ran on today’s class of smart phone, as wireless technologies get better and better daily.

The end game is enabling the war fighter to visualize the battle space in almost any

theater on almost any computing platform. With Ajax, Ajax3D, X3D, and Collada this is

now possible on the Java EE platform.

B. RECOMMENDATIONS FOR FUTURE WORK
The ability now exists to easily create cheap city models. As of today, Rez can

support Geospatial tiles; however, owing to the fact that many 3D browsers have yet to

exhaustively alpha-test their own implementations any code currently produced will most

likely crash at the browser plug-in level. Currently, the geospatial implementations on

the Flux and Xj3D browsers occasionally crash when tested against geospatial tiles in

practical application.

X3D-Earth can obtain value from attempting to integrate X3D into modern day

smartphones. Currently there is not much in terms of research that has been done in the

field of integrating modern day 3D plug-ins to the browsers on most smartphones.

Today, the iPhone, in particular looks promising because of its broad user base and new

and intuitive touch screen controls. Future work might concentrate on implementing a

proof-of-concept demo on a modern day smartphone using Web 2.0 design principles like

Ajax to build an effective UI, which drives an X3D server-side geospatial

implementation. Industry has already made this shift as popular sites such as Digg,

Amazon87, Google and Fandango already have functionality built into their respective

enterprises that detect if the incoming internet protocol (IP) address is from a mobile

device, specifically iPhones. If the IP of the client is an iPhone the preceding systems

87 Amazon iPhone Beta Site. (2007). Amazon.

141

reroute to a customized UI that is both iPhone friendly and looks amazing on a

smartphones smaller screen but still provides every bit of functionality as if the client was

connecting via a normal PC.

Figure 123. An illustration of an Ajax-based front-end specifically designed for the iPhone

from Amazon.com. X3D-Earth could similarly design such an interface for a sever-side
geospatial system. Advantages of the preceding are the touch screen interface and haptic

controls such as the ability to zoom in and out by pinching inwards or outwards with
finger and thumb on the phone’s main screen.

Server-side X3D-Earth is the ultimate goal and might involve the setup of a

framework that might likely be able to handle the huge amount of computation (most

likely the NPS Cluster). The issue with the preceding might essentially be how often to

142

update the imagery and how fast the cluster might produce an actual Rez output, for a

specific metropolitan area, from start to finish. Depending on the eventual system

architecture and performance, it may be too costly to update the terrain data and

orthoimagery of the entire system as often as desired. Instead, depending on how fast the

NPS Cluster can create cities, updates may need to be scheduled at night and the system

taken down. An alternative might be to potentially map entire metropolitan areas or

regions to individual Java EE Enterprise Application Archives (EARs) each listening on a

different port 8080, 8081, 8082 etc. From that point, only regions of the site might need

to go offline for a certain time period, if at all depending on how the application server is

setup. An EAR file consists of the necessary project files, class-referenced libraries, and

numerous XML configuration files to run an enterprise-level application on the Java EE

platform. For testing terrain or orthoimagery updates, modern day application servers

support a concept called hot-deployment which means they are smart enough to be able

to deploy modules without a server restart which is more useful for development and

testing but generally considered unsuitable for production.

A second major point of interest might be to emulate the current server-side

architecture of Google Maps and attempt to retrofit that on top of current capabilities with

3D browsers and Rez. Google Maps currently utilizes a servlet that calls individual tiles

by latitude, longitude and tile zoom-level. Google Maps depends on two built in browser

components, XMLHttpRequest and XSLTProcessor. Figure 124 is a code snippet of a

typical call to the Google Maps Server.88

http://mt.google.com/mt?v=.1&x={x tile
index}&amp;amp;amp;amp;amp;{y tile index}=2&zoom={zoom level}

Figure 124. The above code shows a typical Google Maps server-side call. Figure 124 is
from [88].

In Figure 125, a typical servlet call after a search on the city of Atlanta is shown.

Note the q variable equates to the search field, the z equates to the level of zoom. The

parameter, sll is for latitude and sspn is for span/viewing area. Google Maps uses XSLT

88 Joel Webber. (2005). Mapping Google.

143

to process the XML into corresponding HTML. For a Server Side X3D-Earth, a similar

approach can be applied with Rez being the Map Renderer (Google Maps has their own

proprietary renderer).

 http://maps.google.com/maps?
q=atlanta&z=13&sll=37.062500%2C-95.677068&amp;amp;amp;amp;amp;
sspn=37.062500%2C80.511950&output=js

Figure 125. The above code shows a typical HTTP GET Request for a Query for Atlanta
in Google Maps. Figure 125 is from [88].

<?xml version="1.0"?>
<page>
<title>atlanta</title>
<query>atlanta</query>
<center lat="33.748889" lng="-84.388056"/>

<overlay panelStyle="/mapfiles/geocodepanel.xsl">
<location infoStyle="/mapfiles/geocodeinfo.xsl" id="A">
<point lat="33.748889" lng="-84.388056"/>
<icon class="noicon"/>
<info>
<title xml:space="preserve"></title>
<address>
<line>Atlanta, GA</line>
</address>
</info>
</location>
</overlay>
</page>

Figure 126. Incoming XML server response after an Atlanta query is issued by the client-
side in Google Maps. Figure 126 is from [88].

Oftentimes, the hardest part after ingesting a lot of different acronyms and

technology design patterns is determining which direction is best to pursue after all is

said and done. Currently, the most promising practical application of Web 2.0 for Navy

Modeling and Simulation is to integrate Rez with an X3D-Earth Java EE-based web

application to produce Google Maps style scrolling within an X3D Browser. The most

obvious and effective application of Rez with Ajax can be to utilize Rez as a tool to

create X3D content on the fly and periodically update the aforementioned data on the

server-side, possibly on the NPS Cluster through nightly runs. In such a system, Ajax

can be responsible for updating the X3D scene graph whenever the user drags into

144

another virtual latitude-longitude box possibly using an X3D GeoProximitySensor

construct to do this. The Ajax capability can insure that the tiles are delivered to the

client in a “Just In Time” fashion rather than pushing the entire set of tiles to the client at

every state change. In such a scheme, only the relevant tiles along the new edges of the

screen might be necessary and therefore added with the Ajax3D calls. Asynchronous

streaming of server-side data using Comet can also be a distinct possibility if a normal

Ajax3D client-side architecture provides inadequate tile loading times or has problems

with scalability in practical application due to the server-side needing to constantly send

updates to the client.

To accomplish the preceding goal, the major X3D Browsers, i.e., Flux, Octaga

and Xj3D, need to integrate working and functional Geospatial Nodes for which Rez-

generated models can successfully plug-in to at run-time. Rez might also be modified to

work with Nasa World Wind’s tiling format,

http://issues.worldwind.arc.nasa.gov/confluence/download/attachments/394/world+wind

+tile+systemt.gif.

The preceding can be done in order to more tightly couple with potential services that

World Wind can provide the X3D-Earth Project.

Currently, Google Maps utilizes Ajax calls to update a set of tiles within an outer

div. An inner div also exists in this setup where tiles are added in an on-demand “just in

time” fashion. The preceding is where the Ajax3D calls come into play. Rather than

refreshing the page Google Maps utilizes Ajax calls to create the scrolling effect. An

X3D-Earth application can act the same way updating the scene graph when more Rez

tiles were demanded for a certain latitude-longitude pair rather than reloading the whole

scene graph. In Google Maps, Mouse Listeners are utilized to detect when a user “drags”

the map and can be easily mapped to event listeners (Touch Sensors) within the X3D

specification. Justin Gehtland author of Pragmatic Ajax recently wrote a toy example of

how Google Maps works but without the 2D georeferencing code that sits behind the

application on the server-side89. Luckily, X3D-Earth does not have to worry as much

about georeferenced tiles since Rez takes care of that and X3D already has a specification

89 Justin Gehtland. Ajaxian Maps Example.

145

for Geospatial Nodes. Figure 127 is a screenshot of his “Ajaxian Maps” demo and a

URL for the reader to explore and come to the conclusion that to pull off a similar feat,

even if in 3D, is by no means impossible.

Figure 127. An example of Ajaxian Maps from [89].

Google Maps utilizes a URL to Tile architecture, employing servlets to look up

the necessary tiles within the relevant viewing area and its respective zoom level. Within

the architecture, each tile represents a known squared area. In the future, an X3D-Earth

application might use similar techniques to take advantage of Web 2.0 technologies and

services such as Ajax and REST and create an entirely server side but open standards set

of X3D-Earth Web Services such as online GPS tracking.

http://mt.google.com/mt?v=.1&x={x tile
index}&amp;amp;amp;amp;amp;{y tile index}=2&zoom={zoom level}

Figure 128. Google Maps URL Schema for Servlet Calls from [88]. Note the X and Y
dimension and the Zoom Level Requirements.

146

http://maps.google.com/maps?
q=atlanta&z=13&s11=37.062500%2C-95.677068&amp;amp;amp;amp;amp;
sspn=37.062500%2C80.511950&output=js

Figure 129. Google Maps URL Schema for Servlet Calls when Search is requested from
[88]. Note the q parameter requesting that Atlanta tiles be pulled up.

Additionally, new nodes may need to be defined for X3D to create Google Earth

type terrain overlays in X3D. X3D scene graph nodes might be updated via Ajax3D calls

and be reminiscent of Google Maps overlays such as place marks and location balloons.

The preceding will require much thought and the approval of a majority of the X3D-Earth

Working Group, along with the Web3D consortium. Additionally, an alternative Proto

node can also be looked at that resembles Google Earth’s Panel Control in KML.

Modern day Ajax proxy frameworks such as ZK or ICEfaces are also more than capable

of creating such a rich-UI that can feed an X3D scene space in the same tab control;

providing server-side navigation, zoom, and drag-and drop functionalities. Furthermore,

Ajax web-controls, specifically drag-and-drop controls, can provide additional GUI

functionality above typical HTML or even JSF controls, making the X3D to KML

mapping process much easier if a particular node is either missing or hard to implement

and also introducing the ability to drag and drop from established 3D libraries such as

Savage Studio into X3D space. A KML to X3D mapping using Proto Nodes or new

X3D-Earth specific nodes are part of a new specification is likely critical to create a

robust UI from within the X3D Browser itself and intelligent terrain overlays.

In the long term a type of algorithmic modeling for 3D Buildings90 in cities that

are not landmark quality can also be explored. Google Earth and Microsoft Virtual Earth

both use systems like the following to generate the majority of their low detail 3D

Buildings. Figures 130, and 131 describe the use of computer vision to extrapolate 3D

building information using stereoscopic techniques91. The significant benefit to doing so

is auto generation of a lot of the less interesting buildings in a notional downtown

skyline.

90 Kim Taejung and Choi Soon Dal. (1995). A Technique for 3D Modeling of Buildings.
91 Vosselman Suveg. (2002). Automatic 3D Building Reconstruction.

147

Figure 130. Diagram from A Technique for 3D Modeling of Buildings from [91]. Both

researchers explored the extrapolation of 3D Buildings using stereoscopic techniques.

Figure 131. Automatic 3D Building Reconstruction Paper from [92]. This paper provides

an example of leveraging computer vision algorithms to extract buildings from
orthographic satellite data in.

148

C. OUTLOOK
In general, DoD can integrate Ajax widgets into their web sites and web pages as

to provide a more efficient usage of bandwidth across the GIG along with higher levels

interactivity, richer controls, and increased modularity. At this point in the digital

revolution it starts to become evident that mobile devices will play a more prominent role

in the future. Such devices will only work better in a Web 2.0 environment with

asynchronous calls to the server in a minimalist “just in time” fashion. Recently, the

iPhone has shown the potential of Ajax-based Web Applications on Mobile Devices and

the demand for such devices will continue to grow rapidly. DoD can benefit enormously

from some of the current initiatives in Ajax frameworks such as the progress that the

Dojo http://dojotoolkit.org/ project has made with offline-browsing which is applicable to

forward deployed forces in minimal bandwidth situations. For a Web 2.0 enabled

application, the specific MVC framework chosen is not as important as knowing why it

was chosen over the others and being able to recognize when a given system must switch.

The strengths and weaknesses of each individual framework are also important to be

familiar with. With that being said, Spring, JSF and to a lesser-and-lesser degree, as of

this publication date, Struts are widely recognized as the industry standards for MVC

frameworks.

In conclusion, while this thesis has explained many acronyms and buzzwords

regarding Ajax and Web 2.0 specifically, the big takeaway for DoD Modeling and

Simulation is that XML and that Ajax, or asynchronous client requests to the server-side

has changed the way the web does business. It is also important to realize that today

asynchronous requests from server to client are also possible with Comet (Reverse-Ajax)

which provides intelligent streaming that has at least a chance of being scalable in

practical application. Through, the promotion of open standards and XML on everything,

the project manager can ensure that their current endeavor will be Web 2.0 enabled. In

doing so, the enterprise can be ready to meet the demands of the next generation of

warfare by leveraging the amazing amount of information and interoperability that the

end-user gets as a result of asynchronous calls to the server-side from a rich client-side

user interface.

149

Through the careful application of proxy framework-based Ajaxian widgets and

the selection of appropriate Java EE application layer frameworks, DoD contractors and

project managers will be able to provide value to the fleet with shorter development

times, lower TCO, improved scalability, improved extensibility and a more robust and

intuitive presentation layer. DoD web applications can now contain Ajaxian widgets that

intrinsically have desired features that traditionally have cost many contractor

development hours such as support for both client-side and server-side input validation

and data-bound controls. In the realm of the 3D, Ajax3D offers developers a way to

dynamically alter the 3D scene graph instead of having to reload after each change. The

preceding is a huge paradigm shift that can allow the DoD to create 3D worlds on the

web reminiscent of Google Earth but without the requirement of downloading software to

what most likely will be an NMCI-client machine. Web applications deploy and scale

much better than client-side applications, industry is starting to realize this and by

employing industry best practices the DoD can get onboard as well to maximize the force

multiplier that is the Internet and the new web paradigm that is Web 2.0 and Ajax.

150

THIS PAGE INTENTIONALLY LEFT BLANK

151

APPENDIX A. DEFINITION OF RELEVANT TERMS

Ajax (Asynchronous JavaScript and XML)
http://en.wikipedia.org/wiki/AJAX

Asynchronous JavaScript and XML, a term introduced by Jesse James Garret in

2003 as a way of calling the server-side without a page refreshes. Ironically, Microsoft

developed the XMLHttpRequest Object that makes this possible for a feature in

Microsoft Outlook. However, Silicon Valley startups soon caught on to the idea and are

now able to base entire frameworks on the technology to make new and exciting

applications such as Google Maps.

MVC (Model View Controller)
http://en.wikipedia.org/wiki/Model-view-controller

A way of abstracting out “separation of concerns,” which in English states that

business logic must not reside in presentation code, (read HTML). In this paradigm, the

model serves as the data that you clients need to access. The controller, in this case, is

responsible for giving the clients views or “slices” of the model. Typically the controller

in today’s industry is a full-on framework such as Struts, Spring or JSF (Java Server

Faces).

Polling
http://en.wikipedia.org/wiki/Polling_%28computer_science%29

Polling, or polled operation, in computer science, refers to actively sampling the

status of an external device by a client program as a synchronous activity. Polling is most

often used in terms of I/O (Input/Output) and is also referred to as polled I/O. With

respect to Ajax, polling is querying the server-side for new information using JavaScript

methods at regular intervals of time. Polling raises degradation issues due to problems in

predicting what the appropriate interval of time actually is. If a developer does not

choose the appropriate polling time and the rate of new server-side information is much

greater than the rate at which new data gets polled then the architecture will start to lag

considerably.

152

Google Gears
http://gears.google.com

Gears is software developed by Google which installs a small local web server

and backend, (SQL-Lite) on the client in order to save “state,” and also to allow the client

to navigate on a disconnected page via their local loop back interface on 192.168.1.1.

Later on, at an opportune time when the client is once again connected to the web, Gears

attempts to upload the old data asynchronously to the server-side, thus giving the client

the illusion that they can work on a website even when offline.

Server Push
http://en.wikipedia.org/wiki/Server-push

Server Push is an Ajaxian concept where the Server-Side determines when it is

appropriate to call events on the client. For example, if an Ajaxian Stock Web

Application suddenly gets notice of a major swing in the price of a certain ticker symbol

an event Listener on the client can be triggered alerting any and all interested clients of

the big change.

Ecmascript
http://en.wikipedia.org/wiki/ECMAScript

JavaScript was originally developed in 1995. Ecmascript is the formal name of

the JavaScript language specification approved by (ECMA) the European Computer

Manufacturers Association.

Aspect Oriented Programming (AOP)
http://en.wikipedia.org/wiki/Aspect_oriented_programming

AOP was developed by Gregor Kiczales at Xerox PARC in an attempt to

minimize overlapping functionality in applications. AOP is another attempt to address

separation of concerns, primarily crosscutting concerns, in software modules. One of the

most-used examples of a crosscutting concern is the requirement to provide robust

logging in the context of an application sever. In AOP traditional functions under the old

Object Oriented (OO) paradigm are called aspects or concerns. A common complaint

concerning the OO paradigm is that it does not adequately address behaviors that span

over many modules. AOP is an attempt to redress the preceding grievances. In AOP

aspects or concerns are also independent of any class, which is a big paradigm shift from

153

OO. The idea behind AOP is to be able to inject frequently used aspects arbitrarily in the

code rather than having to call modules with a standard method call.

Aspects can be plugged-in to code at join-points, which can be thought of as

traditional method calls. In AOP instructions or advice must be given to the framework

at join-points to impose a thread of execution on the aspect. Join points are usually

described with XML-descriptors, meta-data or regular expressions in AOP.

Benefits of AOP include the ability to avoid using third-party APIs entirely so in

practice a web application can communicate with an application server or O/R (Object

Relational) persistence layer, et al. with simple Plain Old Java Objects (POJOs). Modern

day application severs typically have AOP concepts built in to their architectures. Sun’s

latest Glassfish Web Container and the latest JBoss Application Server have elements of

AOP in their architectures to be specific which is why at least a rudimentary

understanding of AOP is of moderate importance for most project managers.

154

Figure 132. Diagram of notional Aspect Oriented Programming architecture from AOP.

(2007). Wikipedia. Retrieved August 29, 2007 from
http://en.wikipedia.org/wiki/Aspect_oriented_programming. Note the direction of the

arrows showing the injection of functionality at different joint-points into the application.
This paradigm is a big shift from OO in that AOP lets the application be passive and

receive necessary aspects at runtime instead of calling them directly the old way, (APIs)
and decreasing modularity.

Inversion of Control (IoC) aka: Dependency Injection
http://en.wikipedia.org/wiki/Inversion_of_control

(Practical Application in the Spring Framework, JBoss Seam, JBoss Application

Server and the Glassfish Application Server)

155

Figure 133. An illustration of IoC from Fowler, Martin. (2007). IoC. Retrieved September

5, 2007 from http://martinfowler.com/articles/injection.hml. The diagrram is showing
the IoC framework or assembler creating a runtime concrete class dependency for a

MovieLister based on an XML descriptor. In the XML descriptor, the persistence type
(CSV, SQL, etc.) is tied to a specific concrete class, i.e., SQLMovieFinderImpl.java or

CSVMovieFInderImpl.java making the MovieLister code much more reusable and
modular.

Inversion of control allows for a decoupling of dependencies from objects by

passing them into the constructor as services in a just-in-time fashion, which allows for

better modularity, unit-testing and reusability. For example, if a simple class was created

to retrieve movie names (MovieLister) and it was based on a normal comma-separated

values (CSV) flat-file but an associate wanted to use that same code to read XML, under

a non IoC based code-base the code might need to be heavily re-factored. However,

within an IoC framework, an interface to MovieLister can first be defined which was

independent of its concrete class. At runtime, the IoC resolves MovieFinder calls the

correct concrete class implementation and persistence type from XML descriptors on the

server-side. In this paradigm a one to many relationship between interface and

implementation can now exist because of the IoC. IoC can be thought of, as Applications

running under an IoC-based container such as PicoContainer or Spring contain no direct

references to their dependencies. Rather, the applications under such systems have their

dependencies called for them by the IoC container and passed into the constructor or

through a set function at runtime. Such a paradigm allows for packaged code to be

156

created that is compile-time independent of its dependencies. Many Java EE application

servers such as Spring are architected in this fashion to make the application server itself

much testing-friendly and extensible.

Singleton Pattern
http://en.wikipedia.org/wiki/Singleton_pattern

Design Pattern that restricts the number of allowable instantiable objects to one.

The pattern is typically called for when programming things like Factory interfaces,

(Factory Pattern), print-spooling or file systems but needs to be handled with extreme

caution since it can cause concurrency issues over the network. A Singleton Pattern is

widely considered to be deceptively simple for that very reason.

Anti-Pattern
http://en.wikipedia.org/wiki/Anti-pattern

Anti Patterns are also commonly known as pitfalls or Dark Patterns. Basically, an

anti-pattern is just a common practice that at first appears like a good idea but, once

carefully thought out (or put into production), becomes obviously detrimental.

Interestingly enough, there are a ton of anti-patterns in several categories such as Project

Management, General Design, Object Oriented (OO) Design, Programming Design et, al.

Some of the more famous anti-patterns are the “All You Have is A Hammer” anti-pattern

in management, and the “Software Bloat” anti-pattern in Project Management, which is

self-explanatory.

Design Patterns: Gang of Four
http://en.wikipedia.org/wiki/Gang_of_Four_%28software%29

This term refers to the four original authors, Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides who wrote the book Design Patterns in 1994. This specific

book is an excellent reference for any project manager that has applications residing

under the Java EE platform, as it was one of the first texts to describe such basic patterns

as Façade, Adaptor and Bridge. The book gained much notoriety and is now considered

classic. More than 500,000 copies have currently been sold in over 13 different

languages worldwide.

157

Design Patterns is a must-read for anyone interested in patterns on the Java Platform. It
is considered a landmark book in the world server-side development. Figure 134 is from
Wikipedia, http://en.wikipedia.org/wiki/Gang_of_Four_%28software%29.

Web 2.0
http://en.wikipedia.org/wiki/Web_2

Coined by O’Reilly Media in 2004 generally refers to a paradigm shift to a more

robust web featuring new services such as Wikis, Folksonomies and also new client side

abilities such as Asynchronous Client-Side Updates and Server Side Push.

Reverse Ajax
http://en.wikipedia.org/wiki/Reverse_Ajax

Reverse Ajax is different from Ajax, as Reverse Ajax is a suite of technologies for

pushing data from a server to a client. These technologies are built into many modern day

proxy frameworks such as Dojo Toolkit, DWR, and ZK.

Comet Technology
http://en.wikipedia.org/wiki/Comet_%28programming%29

A better solution might be for the server to send a message to the client when the

event occurs, without the client having to ask for it. Such a client will not have to check

with the server periodically; rather it can continue with other work and work on the data

generated by the event when the server has pushed it. This is exactly what Comet sets out

to achieve. Sun has bought in on the preceding idea by providing their own Comet

support with their Glassfish Web Container.

158

Extensible 3D (X3D)
http://en.wikipedia.org/wiki/X3D

X3D is the ISO standard for real-time 3D computer graphics, the successor to

Virtual Reality Modeling Language (VRML). X3D features extensions to VRML (e.g.

Humanoid Animation, Nurbs, GeoVRML etc.), the ability to encode the scene using an

XML syntax as well as the Open Inventor-like syntax of VRML97, and enhanced

application programmer interfaces (APIs).

Sketchup
http://en.wikipedia.org/wiki/SketchUp

3D Modeling Program by Google with the primary intention of supporting the

new 3D Building technology that came with Google Earth 4.

Keyhole Markup Language (KML)
http://en.wikipedia.org/wiki/Keyhole_Markup_Language

KML is an XML Google markup language for describing terrain overlays. KML

is currently widely considered to be a de-facto industry standard and is awaiting Open

Geospatial Consortium Approval.

KMZ
http://en.wikipedia.org/wiki/KMZ

A KMZ file is a zipped file containing all of the terrain overlay information in a

file called doc.kml while the geometry and textures are stored in Collada format in their

respective subfolders.

Collada (Collaborative Design Activity)
https://collada.org/public_forum/welcome.php

An XML based 3D Graphics Interchange format supported by The Khronos

Group, http://www.khronos.org/ ,which now manages the OpenGL project.

159

APPENDIX B. CONTROLLER ARCHITECTURES

Figure 134. A high-level view of typical Struts architecture from [18]. Note that there is a

clear separation of concerns between Presentation, Controller, and Business Logic within
the architecture.

Figure 135. A high-level view of a Struts Lifecycle from [18]. Note the common Struts

practice of populating Action forms. Struts is also known as an Action-based
architecture. Also note the native Struts support for both conversion and validation errors

through XML descriptors.

160

Figure 136. An example of Struts Action Code on the server-side from [18]. Note that
Struts Actions take a standard HttpServletRequest and HttpServletResponse object. The
preceding underlines how the Struts framework effectively takes control of the standard

HTML request/response paradigm and asserts its own control within the scope of the
framework.

Figure 137. The main XML configuration file for Struts telling it what beans to listen from

the client-side forms from [18]. Note that on the Java platform most Model View
Controller Frameworks and Application Servers utilize XML-based descriptors for their

configuration due to code-maintainability and the ability to hot-deploy in test-
environments.

161

Figure 138. A diagram showing Struts connection stubs within the Presentation Layer
from [18]. Note the Struts Tags and the call to the Application Layer, i.e., the User Bean,

in this case.

Figure 139. Spring MVC Architecture from the Spring Framework Home Page,

http://www.springframework.org, Accessed: August 2007. Note the Aspect Oriented
Programming support.

162

Figure 140. Java code showing a typical Spring Controller from [18]. Note how much

cleaner the implementation of the Spring Controller is than the Struts method of
ActionForms.

163

Figure 141. A typical Spring Configuration File from [18]. Note the bean to class, or

entity to business-logic mapping taking place in the code.

164

Figure 142. A notional Spring JSP Presentation Layer from [18]. Note that the form

paradigm is still used however, it is less archaic in that now the Java entity-beans map
directly to form input fields. As was seen in the configuration file the beans are

subsequently mapped to Java classes on the server-side.

165

Figure 143. A summary of Spring Web Flow from [18].

Figure 144. A notional Spring Web Flow XML descriptor showing how the Model View

Controller framework can establish logical links between pages to match the appropriate
work flow for enterprise business processes. Figure 144 is from [18].

166

Figure 145. A modern day (JSF) Java Server Faces architecture from [18]. Note that the

Presentation, Application, and Business Logic layers are still separated. Also note, that
validation and most importantly event-handling have been added.

Figure 146. A basic JSF entity bean from [18]. Note the JSF implementation of beans is

clean and comprised of mainly setters as might be expected.

167

Figure 147. A typical JSF Configuration File from [18]. There is nothing particularly

ground- breaking here just more beans mapped to classes and to a particular scope, i.e.,
session, request or response. It is of note that the new Seam framework from JBoss lets

developers extend scope to transactions, which adds scopes such as contextual,
transaction, and business process to the list of available scopes.

168

Figure 148. An example of a notional (JSP) Java Server Page containing JSF at the

Presentation Layer from [18].

169

Figure 149. Real world application of JSF standard web controls from [18]. Note how
rich the client-controls are compared to traditional HTML controls. In JSF, each control

has event listeners and properties that can be changed with backing beans such as a
session bean or an entity bean.

Figure 150. A listing of new features in JSF 1.2. Glassfish, JBoss, Web Sphere and most

other Application Servers now offer full support for JSF 1.2. Figure 150 is from [18].

170

Figure 151. A listing of MVC architecture evaluation criteria from [18]. This is part one

of three.

Figure 152. A listing of MVC architecture evaluation criteria part from [18]. This is part

two of three.

171

Figure 153. A listing of potential MVC architecture evaluation criteria from [18]. This is

part three of three.

Figure 154. A comparison of List Screen, i.e., paginated data feasibility comparison

between MVC frameworks. Figure 154 is from [18].

172

Figure 155. A comparison of the ease of ensuring operational Book marking, by correctly

handling dynamic state, in various MVC architectures. Figure 155 is from [18].

Figure 156. A comparison of validation schemes in various MVC architectures from [18].

173

Figure 157. A comparison of Testability in various MVC architectures. Figure 157 is

from [18].

Figure 158. A comparison of how Posts and Redirects are handled in various MVC

architectures. Figure 158 is from [18].

174

Figure 159. A listing of the various frameworks that can plug-in to Spring due to its

inherent flexibility. Figure 159 is from [18].

Figure 160. A comparison of the ability of various frameworks to support web site
internationalization, or the ability of the site to be shown in various configurations for

different languages. Figure 160 is from [18].

175

Figure 161. A comparison on how easily various MVC frameworks can template their

respective presentation layers. Figure 161 is from [18].

Figure 162. A comparison of the amount of development tools available in various MVC

architectures. Figure 162 is from [18].

176

Figure 163. A chart listing the various tools available in modern MVC architectures. Note

that JSF and Struts are currently most prevalent frameworks. Figure 163 is from [18].

Figure 164. Slide showing developer job-market concerns that might face influence their

decision when choosing to learn a new Model View Controller framework. Figure 164 is
from [18].

177

Figure 165. A chart showing Dice (Employment Web-site) Job Count Demand by MVC

Architecture. Figure 165 is from [18].

Figure 166. A chart showing various opinions on MVC throughout industry. Figure 166 is

from [18].

178

THIS PAGE INTENTIONALLY LEFT BLANK

179

APPENDIX C. NON-AJAXIAN JAVASCRIPT DATEBOX

dateBox.js 2002-01-09

Author(s): Serge Ryabcuck, z555.com, Copyright 2002

z555.com grants you a royalty free license to use or modify this
software provided that this copyright notice appears on all copies.
This software is provided "AS IS," without a warranty of any kind.
*/

/* ToDo

 - Masks like dd/mm/yyyy, mm/dd/yyyy, etc.
 - Redraw of the object after change of object style properties.
 - Rewrite some object methods for conforming with initial idea
 and remote direct HTML objects calls for properties duplicates
*/
window.dbIE = document.all ? true : false;
// IE 4+
window.dbDOM = (document.getElementById && ! document.all) ? true :
false; // NS6, Mozilla, other DOM2 compartible browsers

function dateBox(name, month, day, year) {
 this.name = name;
 this.day = day;
 this.month = month;
 this.year = year;
 this.id;
 this.version = "2.0.1 [Date Box; 20020109] ";
 this.type = "dateBox";
 this.startYear = 1998;
 this.endYear = 2008;
 this.height = 16;
 this.shortMonthWidth = 47;
 this.longMonthWidth = 87;
 this.dayWidth = 38;
 this.yearWidth = 54;
 this.fontFamily = 'Arial, Verdana, Helvetica, Espy, Sans-
Serif';
 this.fontSize = '8pt';
 this.dateBoxStyle = 'long';

 this.shortMonth = ['Jan', 'Feb', 'Mar',
 'Apr', 'May', 'Jun',
 'Jul', 'Aug', 'Sep',
 'Oct', 'Nov', 'Dec'
];

 this.longMonth = ['January', 'February', 'March',
 'April', 'May', 'June',

180

 'July', 'August', 'September',
 'Octovber', 'Novvember', 'December'
];

// Other Properties;
 this.HTMLcontainer;
 this.objForm;
 this.objMonth;
 this.objDay;
 this.objYear;

// Methods

 this.getName = getName;

 this.setDay = setDay;
 this.getDay = getDay;

 this.setMonth = setMonth;
 this.getMonth = getMonth;
 this.setYear = setYear;
 this.getYear = getYear;

 this.getID = getID;
 this.setStartYear = setStartYear;
 this.getStartYear = getStartYear;
 this.setEndYear = setEndYear;
 this.getEndYear = getEndYear;

 this.getDateBoxStyle = getDateBoxStyle;

 this.setHeight = setHeight;
 this.getHeight = getHeight;

 this.setShortMonth = setShortMonth;
 this.getShortMonth = getShortMonth;

 this.setLongMonth = setLongMonth;
 this.getLongMonth = getLongMonth;

 this.getMonthWidth = getMonthWidth;

 this.setDayWidth = setDayWidth;
 this.getDayWidth = getDayWidth;

 this.setYearWidth = setYearWidth;
 this.getYearWidth = getYearWidth;

 this.getMonthName = getMonthName;

 this.setFontFamily = setFontFamily;
 this.getFontFamily = getFontFamily;

 this.setFontSize = setFontSize;
 this.getFontSize = getFontSize;
 this.setObjPointers = setObjPointers;
 this.makeDateHTML = makeDateHTML;

181

 this.printHTML = printHTML;
 this.monthDays = monthDays;
 this.limitList = limitList

 this.getObjForm = getObjForm;
 this.getObjDay = getObjDay;
 this.getObjMonth = getObjMonth;
 this.getObjYear = getObjYear;

 this.getObjSelectedDate = getObjSelectedDate;
 this.setRawDate = setRawDate;
 this.setObjDate = setObjDate;
//Events
 this.onSelectDate = onSelectDate;

 var curDate = new Date();
 if (!month) { this.month = curDate.getMonth()+1 };
 if (!day) { this.day = curDate.getDate() };
 if (!year) {
 if (window.dbDOM) {
 this.year = curDate.getYear()+1900;
 } else {
 this.year = curDate.getYear();
 }
 };

 if (!window.dateBoxes) window.dateBoxes = new Array();
 this.id=window.dateBoxes.length;
 window.dateBoxes[window.dateBoxes.length] = this;

}

///
// dateBox.getName()
function getName() {
 return this.name;
}

///
// dateBox.setDay()
function setDay(day) {
 this.day=day;
}

///
// dateBox.getDay()
function getDay() {
 return this.day;
}
///
// dateBox.setMonth()
function setMonth(month) {
 this.month = month;
}
///
// dateBox.getMonth()
function getMonth() {

182

 return this.month;
}
///
// dateBox.setYear()
function setYear(year) {
 this.year=year;
}
///
// dateBox.getYear()
function getYear() {
 return this.year;
}

///
// dateBox.getID()
function getID() {
 return this.id;
}

///
// dateBox.setStartYear()
function setStartYear(year) {
 this.startYear = year;
}

///
// dateBox.getStartYear()
function getStartYear() {
 return this.startYear;
}

///
// dateBox.setEndYear()
function setEndYear(year) {
 this.endYear = year;
}

///
// dateBox.getEndYear()
function getEndYear() {
 return this.endYear;
}

///
// dateBox.getDateBoxStyle()
function getDateBoxStyle() {
 return this.dateBoxStyle;
}
///
// dateBox.setShortMonth()
function setShortMonth(monthArray) {
 this.shortMonth=monthArray;
}

///
// dateBox.getShortMonth()
function getShortMonth(monthIndex) {

183

 return this.shortMonth[monthIndex-1];
}
///
// dateBox.setLongMonth()
function setLongMonth(monthArray) {
 this.longMonth=monthArray;
}
///
// dateBox.getLongMonth()
function getLongMonth(monthIndex) {
 return this.longMonth[monthIndex-1];
}

///
// dateBox.getMonthName()
function getMonthName(monthIndex) {
 if (this.getDateBoxStyle() == 'short') {
 return this.getShortMonth(monthIndex);
 } else {
 return this.getLongMonth(monthIndex);
 }
}

///
// dateBox.setHeight()
function setHeight(height) {
 this.height = height;
}

///
// dateBox.getHeight()
function getHeight() {
 return this.height;
}
///
// dateBox.setShortMonthWidth()
function setShortMonthWidth(width) {
 this.shortMonthWidth = width;
}

///
// dateBox.setLongMonthWidth()
function setLongMonthWidth(width) {
 this.longMonthWidth = width;
}
///
// dateBox.getMonthWidth()
function getMonthWidth() {
 if (this.getDateBoxStyle() == 'short') {
 return this.shortMonthWidth;
 } else {
 return this.longMonthWidth;
 }
}

///
// dateBox.setDayWidth()

184

function setDayWidth(width) {
 this.dayWidth = width;
}
///
// dateBox.getDayWidth()
function getDayWidth() {
 return this.dayWidth;
}

///
// dateBox.setYearWidth()
function setYearWidth(width) {
 this.yearWidth = width;
}

///
// dateBox.getYearWidth()
function getYearWidth() {
 return this.yearWidth;
}

///
// dateBox.setFontFamily()
function setFontFamily(family) {
 this.fontFamily=family;
}

///
// dateBox.getFontFamily()
function getFontFamily() {
 return this.fontFamily;
}
///
// dateBox.setFontSize()
function setFontSize(size) {
 this.fontSize=size;
}
///
// dateBox.getFontSize()
function getFontSize() {
 return this.fontSize;
}
///
// dateBox.getObjForm()
function getObjForm() {
 return this.objForm;
}
///
// dateBox.getObjDay()
function getObjDay() {
 return this.objDay;
}
///
// dateBox.getObjMonth()
function getObjMonth() {
 return this.objMonth;
}

185

///
// dateBox.getObjYear()
function getObjYear() {
 return this.objYear;
}
///
// dateBox.makeDateHTML()
function makeDateHTML() {
 var dateStr = "";
 // Build Month
 dateStr += '<select name="' + this.getName() + 'Month' +
 '" style="font-family : ' + this.getFontFamily() +
 '; HEIGHT: ' + this.getHeight() + 'px; WIDTH:' +
 this.getMonthWidth() + 'px; font-size: ' +
this.getFontSize() +
 ';" onChange="window.dateBoxes[' + this.getID() +
'].onSelectDate()">';

 for (i=1; i<=12;i++) {
 if (this.getMonth() == i) {
 dateStr += '<option selected value=' + i + '>' +
this.getMonthName(i);
 } else {
 dateStr += '<option value=' + i + '>' + this.getMonthName(i);
 }
 }
 dateStr += "</select>";
 // Build Day
 dateStr += '<select name="' + this.getName() + 'Day' +
 '" style="font-family : ' + this.getFontFamily() +
 '; HEIGHT: ' + this.getHeight() + 'px; WIDTH: ' +
 this.getDayWidth() + 'px; font-size: ' +
this.getFontSize() +
 ';" onChange="window.dateBoxes[' + this.getID() +
 '].onSelectDate()">';

 for (i=1; i<=31; i++) {
 if (this.getDay() == i) {
 dateStr += '<option selected>'+i;
 } else {
 dateStr += '<option>'+i;
 }
 }
 dateStr += "</select>";
 // Build Year
 dateStr += '<select name="' + this.getName() + 'Year' +
 '" style="font-family : ' + this.getFontFamily() + ';
HEIGHT: ' +
 this.getHeight() + 'px; WIDTH: ' + this.getYearWidth() +
 'px; font-size: ' + this.getFontSize() +
 ';" onChange="window.dateBoxes[' + this.getID() +
'].onSelectDate()">';

 for (i=this.getStartYear(); i<=this.getEndYear(); i++) {
 if (this.getYear() == i) {
 dateStr += '<option selected>' + i;

186

 } else {
 dateStr += '<option>' + i;
 }
 }
 dateStr += "</select>";
 this.HTMLcontainer=dateStr;
}
///
// dateBox.printHTML()
function printHTML() {
 document.write(this.HTMLcontainer);
 this.setObjPointers(document.forms[document.forms.length-1]);
 this.limitList(this.monthDays(this.getMonth(),this.getYear()));
}
///
// dateBox.setObjPointers()
function setObjPointers(form) {
 this.objForm = form;
 this.objDay = eval("form."+this.getName()+"Day");
 this.objMonth = eval("form."+this.getName()+"Month");
 this.objYear = eval("form."+this.getName()+"Year");
}
// How many days in the month?
// dateBox.monthDays()
function monthDays(month,year) {
 var day = new Array(31,28,31,30,31,30,31,31,30,31,30,31);
 month--;
 if ((year % 4 == 0) && (month==1)) {
 if (year % 100 == 0) {
 if (year % 400 == 0) {
 return 29;
 } else {
 return 28;
 }
 } else {
 return 29;
 }
 } else {
 return day[month];
 }
}
// Event processor
// dateBox.onSelectDate()
function onSelectDate() {
 if (window.dbIE || window.dbDOM) {
 var objDay=this.getObjDay();
 var objYear=this.getObjYear();
 var objMonth=this.getObjMonth();
 yearVal=objYear.options[objYear.selectedIndex].text;
 monthVal=objMonth.options[objMonth.selectedIndex].value;
 this.limitList(this.monthDays(monthVal,yearVal));

 this.setDay(objDay.selectedIndex+1);
 this.setMonth(objMonth.selectedIndex+1);
 this.setYear(objYear.selectedIndex+this.startYear);
 }
}

187

//Rebuilds dropdown list of day options according to the month
///
// dateBox.limitList()
function limitList(length) {
 list=this.getObjDay();
 if (length<(list.selectedIndex+1)) {
 list.selectedIndex=length-1;
 }
 if (window.dbIE || window.dbDOM) {
 if (list.options.length<length) {
 for (var i=list.options.length+1; i<=length; i++) {
 var oOption = document.createElement('OPTION');
 if (window.dbIE) {
 list.options.add(oOption);
 oOption.innerText = i;
 oOption.Value = i;
 } else if (window.dbDOM) {
 oOption.text = ' '+i;
 oOption.Value = i;
 list.add(oOption,null);
 }
 }
 } else if (list.options.length>length) {
 for (var i=list.options.length; i>=length; i--) {
 list.remove(i);
 }
 }
 }
}
// Convert form fields to Date object
///
// dateBox.getObjSelectedDate()
function getObjSelectedDate() {
 if (window.dbIE || window.dbDOM) {
 var objDay=this.getObjDay();
 var objYear=this.getObjYear();
 var objMonth=this.getObjMonth();
 var day=objDay.options[objDay.selectedIndex].text;
 var month=objMonth.options[objMonth.selectedIndex].value-1;
 var year=objYear.options[objYear.selectedIndex].text;

 var dateObj = new Date(year, month, day);
 return dateObj;
 }
}
// Set specified Date
///
// dateBox.setRawDate()
function setRawDate(month,day,year) {
 if (window.dbIE || window.dbDOM) {
 var objDay=this.getObjDay();
 var objYear=this.getObjYear();
 var objMonth=this.getObjMonth();

 this.limitList(this.monthDays(month,year));
 objDay.selectedIndex=day-1;
 objMonth.selectedIndex=month-1;

188

 objYear.selectedIndex=year-this.startYear;
 }
}

///
// dateBox.setObjDate()
function setObjDate(date){
 if (window.dbIE || window.dbDOM) {
 var month = date.getMonth()+1;
 var day = date.getDate();
 if (window.dbDOM) {
 var year = date.getYear()+1900;
 } else {
 var year = date.getYear();
 }
 this.setRawDate(month,day,year);
 }
}

189

LIST OF REFERENCES

Ajax (programming). (2007, June 1). In Wikipedia, The Free Encyclopedia. Accessed
11:13, June 2, 2007, from
http://en.wikipedia.org/w/index.php?title=Ajax_%28programming%29&oldid=13
5120501.

Ajax3D Project Home. (2006). Ajax3D. Retrieved August 2, 2007, from

http://www.ajax3d.org/.

Alinone, Alexander. (2006, December). Changing the Web Paradigm. Lightstreamer

Technologies. Retrieved August 15, 2007, from
http://www.lightstreamer.com/Lightstreamer_Paradigm.pdf.

Amazon iPhone Beta Site, http://www.amazon.com/gp/aw/h.html, Accessed: September

2007.

Apache XAP Project Home. (2007). Apache Software Foundation. Retrieved August 16,

2007, from http://incubator.apache.org/xap/.

Almaer, Dion, Galbraith, Ben and Gehtland, Justin. (2006). Pragmatic Ajax: A Web 2.0

Primer. Raleigh:Pragmatic Bookshelf.

Arnaud, Rémi. and Parisi, Tony. (25 March 2007). Developing X3D Web Applications

With Collada and X3D, White Paper. http://
www.khronos.org/collada/presentations/Developing_Web_Applications_with_C
OLLADA_and_X3D.pdf.

Baker, Chris. (2007, May 16). Ajax Performance Tuning., Message Posted to

http://blog.shinetech.com/?p=37, Accessed: July 2007.

Barr, Joe. (2006, July 7). Navy Open Technology Development Roadmap. Retrieved

August 3, 2007, from http://www.linux.com/feature/55590.

Basic Ajax Architecture. TopCoder. Retrieved May 5, 2007 from

http://www.topcoder.com.

Bederson, Benjamin. (2000). Fisheye Menu Usability Study. University of Maryland.

Retrieved August 9, 2007, from http://hcil.cs.umd.edu/trs/2000-12/2000-12.html.

Bell, John, Chopra, Vivek, Eaves, Jon, Jones, Rupert, Sing Li. (2005). Beginning

JavaServer Pages. Indianapolis:Wiley.

190

Braiker, Brian. (2006, December 30). The Year of the Widget? Published on
MSNBC.com. Retrieved August 21, 2007, from
http://www.msnbc.msn.com/id/16329739/site/newsweek/, Accessed: August
2007.

Brutzman, Don and Daly, Leonard. (2007). X3D: Extensible Graphics for Web Authors.

San Francisco:Morgan Kaufmann.

Bullard, Len. (2007, April 25). AJAXing the X3D Sequencer: ISO SAI Architecture.

Retrieved July 25, 2007, from
http://3donthewebcheap.blogspot.com/2007/04/ajaxing-x3d-sequencer.html.

Calore, Michael. (2007, July 27). Microsoft Sees a Mixture of Desktop and Delivered in

its Future,. Wired Magazine. Retrieved July 30, 2007, from
http://blog.wired.com/monkeybites/2007/07/microsoft-sees-.html.

Cardwell, Les. (2005, December 30). AJAX-Bridging the Thin-Client Performance Gap.

Retrieved August 20, 2007, from http://www.ironspeed.com/articles/AJAX-
Bridging%20the%20Thin-Client%20Performance%20Gap/Article.aspx.

Carey, Patrick. (2007). XML 2nd Edition. Boston:Thompson.

Comet (programming). (2007, August 26). In Wikipedia, The Free Encyclopedia.

Retrieved 13:39, August 28, 2007, from
http://en.wikipedia.org/w/index.php?title=Comet_%28programming%29&oldid=
153834143.

Crane, Dave, James, Darren, and Pascarello, Eric. (2006). Ajax in Action.

Greenwich:Manning.

Cross-site request forgery. (2007, July 6). In Wikipedia, The Free Encyclopedia.

Retrieved 02:14, July 15, 2007, from
http://en.wikipedia.org/w/index.php?title=Cross-
site_request_forgery&oldid=142928339.

Cruzbaez, Wilfredo, Effectiveness evaluation of Force Protection Training using

Computer-based Instruction and X3D Simulation. Master’s Thesis. Naval
Postgraduate School, Monterey Ca. September 2007.

Department of Defense Directive 8100.1. (2002, September 19). GIG Compliance.

Retrieved August 1, 2007, from
http://www.dtic.mil/whs/directives/corres/pdf/810001p.pdf.

191

Design pattern (computer science). (2007, June 5). In Wikipedia, The Free Encyclopedia.
Retrieved 08:53, June 17, 2007, from
http://en.wikipedia.org/w/index.php?title=Design_pattern_%28computer_science
%29&oldid=136067623.

Dojo Project Home. (2007). Dojo Ajax Framework. Retrieved June 18, 2007 from

http://dojotoolkit.org/.

Dojo Toolkit Fisheye Demo. (2007, September 14). Dojo Toolkit Homepage. Retrieved

June 2, 2007, from http://dojotoolkit.org/demos/fisheye-demo.

eBay REST Developer Center. (2007). eBay. Retrieved July 22, 2007, from

http://developer.ebay.com/developercenter/rest/.

Echo2 Project Home. (2007). Echo2 Ajax Framework. Retrieved 5 May 2007 ,from

http://code.google.com/webtoolkit/.

Fleming Candace C., and Von Halle Barbara. (1989). Handbook of Relational Database

Design. Boston:Addison Wesley.

Fox, Geoffery. (1999). JavaScript Performance Issues. Syracuse University. Retrieved

July 12, 2007, from
http://www.npac.syr.edu/users/gcf/forcps616javascript/msrcobjectsapril99/tsld02
2.htm.

Gehrke, Johannes, and Ramakrishnan, Raghu. (2000). Database Management Systems 2nd

Edition. Boston:McGraw-Hill.

Gehtland, Justin. Ajaxian Maps Example. Retrieved July 17, 2007, from

http://media.pragprog.com/titles/ajax/code/GoogleMaps/step7.html.

Global Information Grid. (2007, May 19). In Wikipedia, The Free Encyclopedia.

Retrieved 16:15, May 30, 2007, from
http://en.wikipedia.org/w/index.php?title=Global_Information_Grid&oldid=1319
64209.

Google Login New User Registration Page. Google. Retrieved August 4, 200,7 from

http://www.google.com/accounts/NewAccount.

Global Mapper Homepage. (2007). Global Mapper LLC. Retrieved August 17, 2007,

from http://www.globalmapper.com/.

Google Earth. (2007). Google. Retrieved August 15, 200,7 from http://earth.google.com.

Google Maps. (2007). Google. Retrieved August 15, 2007, from http://maps.google.com.

192

Google 3D Warehouse. (2007). Google. Retrieved August 15, 200,7 from
http://sketchup.google.com/3dwarehouse.

Google 3D Warehouse Terms of Service. (2007). Google. Retrieved August 15, 2007,

from http://sketchup.google.com/3dwarehouse/en/tos.html.

Google Web Toolkit Project Home. (2007). Google. Retrieved May 18, 2007, from

http://code.google.com/webtoolkit.

Grossman, Jeremiah. (2006, January 27). Advanced Web Attack Techniques Using

Gmail. Retrieved June 5, 2007, from
http://jeremiahgrossman.blogspot.com/2006/01/advanced-web-attack-techniques-
using.html.

Hall, Marty. (2000). Core Servlets and JavaServer Pages. Upper Saddle River:Sun

Microsystems Press.

Harrington, Jan. (1998). Relational Database Design Clearly Explained. San

Diego:Morgan Kaufmann.

Hinchcliffe, Dion. Google’s Innovative Yet Limited Ajax Environment. Retrieved May

10, 2007, from
 http://www.ajaximpact.com/detail_Articles_id_189_Google_s_Innovative_Yet_L

imited_Ajax_Environment_GWT.html.

Horstmann Cay S., and Cornell, Gary. (2004). Core Java 2 Advanced Features.

Stoughton:Sun Microsystems Press.

Housing Maps Home Page. (2007). Retrieved June 1, 2007, from

http://housingmaps.com.

ICEfaces Auction Monitor Live Demo. (2007). IceSoft Technologies. Retrieved June 17,

2007, from http://auctionmonitor.icefaces.org/auctionMonitor/.

ICEfaces Component Showcase: Drag and Drop. (2007). IceSoft Technologies.

Retrieved June 17, 2007, from http://component-
showcase.icefaces.org/component-showcase/.

Inversion of Control Containers and the Dependency Injection Pattern (2004, January 4).

MartinFowler.com. Retrieved 00:27, September 12, 2007, from
http://martinfowler.com/articles/injection.hml.

Java ICEfaces Project Home. (2007). IceSoft Technologies. Retrieved August 12, 2007,

from http://www.icesoft.com/products/demos_icefaces.html.

193

Johnson, Dave. (2007). Pragmatic Parallels: From Development on the Java Platform to
Development With the JavaScript Programming Language . Retrieved July 16,
2007, from Nitobi Corporation, http://www.slideshare.net/davejohnson/pragmatic-
parallels-java-and-javascript.

Kiko Calendar Home Page. (2007). Kiko. Retrieved June 16, 2007, from http://kiko.com.

Keyhole Markup Language. (2007, September 4). In Wikipedia, The Free Encyclopedia.

Retrieved 09:28, September 5, 2007, from
http://en.wikipedia.org/w/index.php?title=Keyhole_Markup_Language&oldid=15
5618521.

KML 2.1 API Reference. (2007). Google. Retrieved September 1, 2007, from

http://code.google.com/apis/kml/documentation/kml_tags_21.html.

KML Open Geospatial Consortium (OGC) Best Practice 2.1.0. (2007). Open Geospatial

Consortium. Retrieved September 3, 2007 from
http://www.opengeospatial.org/resource/products/byspec/?specid=241.

Mahemoff, Michael. (2006). Ajax Design Patterns Book. Cambridge:O’Reilly.

McFarland, David S. (2006). CSS The Missing Manual. Cambridge:O’Reilly.

Microsoft Premiers First Live Strategy. (2005, November 1). Microsoft. Retrieved

August 6, 2007 from http://www.microsoft.com/presspass/press/2005/nov05/11-
01PreviewSoftwareBasedPR.mspx.

Mind map. (2007, July 24). In Wikipedia, The Free Encyclopedia. Retrieved 02:11, July

28, 2007, from
http://en.wikipedia.org/w/index.php?title=Mind_map&oldid=146676155.

MVC Architecture Summary. (2007, August 17). PHP.net. Retrieved August 22, 2007

from http://talks.php.net/show/zagreb2/1.

NASA World Wind. (2007, September 7). In Wikipedia, The Free Encyclopedia.

Retrieved 08:29, September 7, 2007, from
http://en.wikipedia.org/w/index.php?title=NASA_World_Wind&oldid=15636950
4.

Nasa World Wind Tiling Schema. (2007). Nasa. Retrieved August 18, 2007 from

http://issues.worldwind.arc.nasa.gov/confluence/download/attachments/394/world
+wind+tile+systemt.gif.

Netflix’s Top 100 Home. (2007). Netflix. Retrieved August 29, 2007 from

http://www.netflix.com/Top100#.

194

Nielsen, Jakob. (1999). Designing Web Usability. Indianapolis:New Riders Press.

Nielsen, Jakob. (1994). Response Time: The Three Important Limits. Retrieved August 5,

2007 from http://www.useit.com/papers/responsetime.html.

Nuggets of Wisdom from eBay’s Architecture. (2004, June 21). Retrieved August 26,

2007 from http://www.manageability.org/blog/stuff/about-ebays-architecture.

Open Ajax Alliance. (2007). Open Ajax Hub FAQ. Retrieved August 4, 2007 from

http://www.openajax.org/OpenAjax%20Hub.html.

Neushul, James D, Interoperability, Data Control, and Battle Space Visualization Using

XML, XSLT, and X3D. Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 2003.

Parisi, Tony. (August 2006). Ajax3D: The Open Platform for Rich 3D Web Applications,

White Paper. http://www.ajax3d.org/whitepaper/.

Parisi, Tony. (2006, October 12). Ajax3D Hello World Example. Retrieved 7 July, 2007

from http://www.ajax3d.org/content/t1/indexa.html.

Parisi, Tony. (2006, October 12). Ajax3D Dynamic Scene Creation. Retrieved 7 July,

2007 from http://www.ajax3d.org/content/t1/indexa.html.

Pritchett, Dan and Shoup, Randy. (2006, November 29). eBay Architecture. Retrieved

July 4, 2007 from
http://www.addsimplicity.com/downloads/eBaySDForum2006-11-29.pdf.

Protopage Home. (2007). Protopage. Retrieved August 21, 2007 from

http://www.protopage.com.

Rauch, Travis, Savage Modeling Analysis Language (SMAL): Metadata for Tactical

Simulations and X3D Visualizations. Master’s Thesis, Naval Postgraduate
School, Monterey, California, March 2006

Raible, Matt. (2006). Comparing Web Frameworks. Virtuas Open Source Solutions.

Retrieved June 5, 2007 from https://equinox.dev.java.net/framework-
comparison/WebFrameworks.pdf.

REZ Design Architecture. (2007, June 26). Rez Source Forge Homepage. Retrieved

08:30, August 9, 2007 from http://planet-earth.org/Rez/doc/design.html.

RSS. (2007, August 23). In Wikipedia, The Free Encyclopedia. Retrieved 06:51, August

28, 2007, from
http://en.wikipedia.org/w/index.php?title=RSS&oldid=153100154.

195

Ryabuck, Serge. (2002, January 9). Legacy JavaScript Code. Retrieved May 15, 2007
from http://www.z555.com/js/dateBox.txt.

Samy (XSS). (2007, June 22). In Wikipedia, The Free Encyclopedia. Retrieved 21:20,

July 14, 2007, from
http://en.wikipedia.org/w/index.php?title=Samy_%28XSS%29&oldid=13981982
2.

Shiflet, Chris. (2007, March 15). My Amazon Anniversary. In PHP and Web

Application Security. Retrieved June 7, 2007 from
http://shiflett.org/blog/2007/mar/my-amazon-anniversary.

Standley, Jim. (2005). RESTful Architecture. Retrieved July 8, 2007 from

http://www.surfscranton.com/architecture/RestfulArchitecture.htm.

Sullivan, Patrick J, Evaluating the Effectiveness of Waterside Security Alternatives for

Force Protection of Navy Ships and Installations using X3D Graphics and Agent-
Based Simulation. Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 2006.

Suveg, Vosselman. (2002). Automatic 3D Building Reconstruction. Retrieved July 10,

2007 from http://www.itc.nl/personal/vosselman/papers/suveg2002.spie.pdf.

Taejung Kim, Soon Dal Choi. (1995). A Technique for 3D Modeling of Buildings.

Retrieved July 30, 2007 from
http://www.gisdevelopment.net/aars/acrs/1995/ts5/ts5007.asp.

Technical Explanation of the MySpace Worm. Retrieved July 18, 2007 from

http://web.archive.org/web/20060208182348/namb.la/popular/tech.html.

USGS Seamless Data Distribution System. (2007). USGS Website. Retrieved September

5, 2007 from http://seamless.usgs.gov/.

Web 2.0. (2007, May 30). In Wikipedia, The Free Encyclopedia. Retrieved 16:58, May

30, 2007, from
http://en.wikipedia.org/w/index.php?title=Web_2.0&oldid=134543336.

X3D-Earth Home Page. (2007). Web 3D Consortium. Retrieved September 21, 2007

from http://www.web3d.org/x3d-earth/.

X3D Geospatial Node Specification. Web3D Consortium. Retrieved August 7, 2007 from

http://www.web3d.org/x3d/specifications/ISO-IEC-19775-
X3DAbstractSpecification_Revision1_to_Part1/.

Web3D Consortium, ISO/IEC 19775:200x, X3D, Information Technology, Computer

Graphics and Image Processing, Extensible 3D (X3D), 2001.

196

World Geodetic System. (2007, August 9). In Wikipedia, The Free Encyclopedia.

Retrieved 08:53, August 29, 2007, from
http://en.wikipedia.org/w/index.php?title=World_Geodetic_System&oldid=15018
7257.

Webber, Joel. (2005). Mapping Google. Personal Blog. Retrieved July 19, 2007 from

http://jgwebber.blogspot.com/2005/02/mapping-google.html.

Wirbel, Loring. (2005, August 8). XML Hardware to Power DoD's GIG Security

Gateway. Retrieved July 1, 2007 from
http://www.embedded.com/showArticle.jhtml?articleID=167600592.

Yahoo Mindset Home (2007). Yahoo. Retrieved July 14, 2007 from

http://mindset.research.yahoo.com.

Yoo, Byounghyun. (2007, July 6). Multi-resolution Representation of Geospatial

Information. Retrieved August 30, 2007 from http://byoo.net/x3d-earth.

ZK Project Home Page. ZK Ajax Framework. Retrieved August 8, 2007 from

http://www.zkoss.org.

197

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Associate Professor Don Brutzman
Naval Postgraduate School
Monterey, California

4. Research Associate Don McGregor
Naval Postgraduate School
Monterey, California

5. Research Associate Byounghyun Yoo
Naval Postgraduate School
Monterey, California

6. Research Associate Jeff Weekley
Naval Postgraduate School
Monterey, California

7. Research Associate Chris Thorne
Naval Postgraduate School
Monterey, California

